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1.0  INTRODUCTION 

In any engineering field it is important to have the ability to break up a given system into 
manageable parts in order to explore and investigate the interesting and dynamic aspects of the 
system. This is true for the study of thermodynamic systems or for the use of finite-element 
analysis to study static and dynamic properties of parts and facilities. It is also true within the 
field of fluid mechanics and especially the subdiscipline of computational fluid dynamics (CFD). 

The analysis of aerodynamic systems is often broken down into three separate but 
complimentary categories: flight-test, ground-test (wind tunnel testing), and CFD. CFD deals 
directly with applying the laws of conservation (mass, momentum, and energy) to an 
aerodynamic system. It relies on a logical and effective breakup of the system of interest in 
order to properly apply the conservative laws of fluid dynamics to the system in a way that 
properly captures the necessary physics to realistically define the system.  

Mesh generation is the discipline that explores and analyzes the breakup (known as 
discretization) of a system into finite discrete segments so that the characteristics of the 
overarching system can be explored using the Navier-Stokes equations (or, in the case of 
inviscid flow, the Euler equations). This system of equations – named after the Frenchman 
Claude-Louis Navier and the Englishman Gabriel Stokes – are a system of partial differential 
equations. Analytical solutions to partial differential equations involve closed-form expressions 
which give the variation of the dependent variables continuously throughout a domain (Ref.1)[1]. 
However, to analyze a physical system computationally, both the defining equations and the 
domain must be discretized. Discretization of the equations is accomplished by replacing the 
original system of partial differential equations with a system of algebraic equations that can be 
solved to calculate the values of the flowfield variables (pressure, temperature, velocity, etc.) at 
discrete points (often referred to as grid points, mesh points, or nodes). Depending on the way 
the equations are discretized, a finite difference or finite volume numerical solution is obtained. 
In contrast to differential equations, numerical solutions generally give answers only at discrete 
points in the domain; effectively generating these discrete grid point locations is at the heart of 
mesh generation and manipulation.  

There are many ways that a region where the flow is to be analyzed might be discretized. 
Traditionally, the region has been discretized using structured meshes, where the discretization 
of the domain reflects some type of consistent geometrical regularity. However, because of their 
flexibility with capturing real-world geometry, unstructured meshes (where mesh points are 
placed in the flowfield in a very irregular fashion) are being utilized more frequently (Ref. 1).  As 
computational power and storage increase and as unstructured meshes become better 
understood and handled with increasing skill, mesh manipulation techniques that have in the 
past been reserved for structured meshes are migrating to the world of unstructured meshing as 
well. One such technique is the application of Winslow elliptic smoothing equations to a mesh.  

1.1 MESH SMOOTHING AND WINSLOW EQUATIONS 

The Winslow elliptic smoothing equations, first proposed by Alan Winslow in 1967 (Ref. 2), are 
derived from Poisson’s Equation (or Laplace’s Equation for the homogeneous case) for a 
parameter distribution over a region. In structured meshing there is an implicit computational 
space that lends itself well to the application of the Winslow equations. However, no such 
implicit computational space exists for unstructured meshes, and the computational space must, 
therefore, be explicitly defined. It can be shown that a computational space can be constructed 
using the initial discretized physical space. This works well for many applications and often 
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provides a well-defined connectivity and spatial definition for a mesh that is applicable even if 
the geometry that defined the mesh was then allowed to move. However, this also creates the 
requirement that a valid initial mesh exists. This is not always the case; an initial unstructured 
mesh might not exist and, if one does exist, it is possible that there might exist sections in the 
mesh that are invalid due to mesh crossing, negative volumes, or other problems. Using the 
original mesh as the computational space is also problematic if there is a requirement that 
certain mesh characteristics (such as viscous spacing) need to be varied.  

It is apparent that there are significant limitations with using the original mesh as the 
computational space, but a mathematically expedient way of defining a general overarching 
unstructured computational space has proven elusive. Because the unstructured mesh 
connectivity needs to be explicitly defined and the valence count (the number of connected 
nodes or neighbors) varies throughout the domain, no theory currently exists to generate a 
global computational space that reflects a consistent geometric regularity as was done with 
structured meshes. Many difficulties that were due to the lack of a global unstructured 
computational space were alleviated when it was shown that it was not necessary for the entire 
computational mesh to be constructed as an overarching system of nodes and elements and 
that each node in computational space could be isolated from the overarching system as a 
virtual control volume and coupled only though the coordinates in physical space, which are 
treated as free variables (Refs. 3 and 4). These virtual control volumes can be constructed with 
ideal shapes and uniform quality. 

A physical region is discretized using structured meshes by breaking up the region into 
quadrilaterals (quads) in two dimensions and hexahedra (hexes) in three dimensions. The 
simplest way to discretize a physical region using unstructured meshes is to break up the region 
into triangles in two dimensions and tetrahedra (tets) in three dimensions. There are many other 
ways to discretize a region using unstructured meshes, but this document will only address the 
simplex geometry elements. Examples of a simple two-dimensional region that has been 
discretized using both structured and unstructured methodologies, as well as the corresponding 
computational spaces, are shown in Figs. 1 and 2. The convention used within this document is 
that physical space is generally displayed with a red mesh while computational space is 
generally displayed with a black or gray mesh; this convention is illustrated in Figs. 1 and 2. 
Additional information concerning grid metrics, which describe the relationship (or mapping) 
between physical and computational space, is assembled in Appendix A. 

When applied to an unstructured mesh, the Winslow elliptic smoothing equations allow mesh 
points to be moved and smoothed to conform to a moving (or nonmoving) surface. The Winslow 
equations deal with derivatives of physical space (x,y) with respect to computational space (). 
A detailed derivation of the Winslow equations is demonstrated in Appendix B, and it is 
interesting to note how much more complex the equations become when they are transformed 
from the relatively simple form with respect to coordinates in physical space compared to the 
form where the derivatives are with respect to the computational coordinates.  

In Fig. 2 the nodes, which correspond to the four nodes shown as black dots in physical space, 
are broken off from the overarching system and are coupled only through the coordinates in 
physical space. Each node will have a unique computational space similar to the ones shown in 
the figure. Note that the computational space for a boundary node does not have a complete 
neighbor-node stencil. 



AEDC-TR-10-T-36 
 

7 
Statement A:  Approved for public 
release; distribution is unlimited. 

 
Figure 1.  Structured Mesh in Physical and Computational Space 

 

 
Figure 2.  Unstructured Mesh in Physical and Computational Space 

 
1.2 EXTENSION OF WINSLOW EQUATIONS 

For an unstructured mesh, the central node in each of the individual virtual control volumes in 
computational space is surrounded by neighboring nodes using equal angles and equal edge-
lengths, and it is necessary that the central node be fully surrounded by neighboring nodes for 
the computational stencil to be complete. (A note on terminology: the node-of-interest – i.e., the 
node being smoothed at a given instant – will often be referred to in this document as the 
central node and is always located at the origin in computational space.) The characteristics of 
the Winslow equations implemented using this method make them ideal for smoothing inviscid 
mesh elements in the interior region of a mesh because the equations drive the mesh elements 
to display an isotropic behavior; that is, the triangular mesh elements in physical space will all 
become as close to equilateral as possible within the constraints of the overall system.  

The need for a complete computational neighbor-node stencil and the tendency to drive mesh 
elements to exhibit isotropic behavior, however, makes the conventional Winslow methodology 
unsuitable to two situations that are common in fluid mechanics (Ref. 5). The first situation is 
where the nodes on the boundaries need to move to accommodate the movement of the interior 
nodes. Often, keeping the boundary nodes static while interior nodes move will result in mesh 
elements that exhibit a sufficient amount of skew to cause the numerical solutions generated on 
the mesh to become unstable or unreliable. The second situation is one where the viscous 
properties of the flow are important. In the viscous boundary-layer region, the flowfield variables 
are changing very rapidly normal to the surface, but much more mildly in the direction parallel to 
the surface. In order to capture the viscous boundary layer in an efficient manner, it is 
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necessary that the mesh elements near the viscous surface have high aspect ratios. Otherwise, 
the resolution required to capture the gradients in the normal direction will result in a potentially 
prohibitive number of grid points. 

These two common situations are addressed in detail in this report in Sections 6 and 7. A 
methodology is presented and described that will make it possible to apply the Winslow elliptic 
smoothing equations to a node on a boundary. Implementation of this methodology allows the 
boundary nodes to float and greatly improve the mesh in certain situations. Several examples 
are shown that illustrate the benefit of implementing the Winslow equations such that the 
surface nodes are allowed to float. A methodology is also presented that allows the Winslow 
equations to be applied to viscous regions of a mesh, where it is required that the mesh be 
highly anisotropic.  Examples of this implementation are illustrated as well.  

1.3      MESH REFINEMENT AND OPTIMIZATION 

Two areas where the Winslow equations can be used in conjunction with other analysis 
techniques are adaptive mesh refinement (AMR) and optimization. AMR is employed with the 
purpose of reducing the computational cost of generating a flow solution while maintaining a 
given level of accuracy for the solution. In a finite-element context, adaptive mesh refinement is 
generally classified into three categories: h-refinement (enrichment), r-refinement (movement), 
and p-refinement (reconnection).  

H-refinement schemes often use an error estimator to determine regions of the grid where the 
solution is underresolved and add elements locally to improve the resolution. This is done with 
the intent of improving the accuracy of the solution. While h-refinement schemes have 
demonstrated the ability to improve solution accuracy through local refinement, there is added 
overhead due to the increased number of mesh elements (Ref. 6). The p-refinement approach 
increases the element order by increasing the degree of the piecewise polynomials over the 
triangular mesh elements. The r-refinement approach involves the redistribution of points. R-
refinement involves moving the nodes of the mesh while maintaining the cell connectivity and 
the size of the mesh (Ref. 7).  

R-refinement is the category that includes mesh smoothing. Conceptually, r-refinement is 
relatively straightforward, but it can produce highly skewed cells and prohibitively small (or 
negative) cell volumes if not performed correctly. AMR generally refers to adapting a mesh to a 
particular flow solution but herein deals also with adapting a mesh to changes in geometry.  

Design optimization may be performed to improve the performance of a given design operating 
under a certain set of conditions. An efficient way to perform a design optimization on a 2D 
mesh is to couple an optimization code with a 2D CFD solver and a mesh movement/refinement 
code. The concept of optimization is based on finding a minimum of some function. A design 
reaching an optimum state implies that the function for which the optimization has been 
performed has been minimized and the derivates of the function are zero. By employing 
sensitivity derivatives based on the impact of a given set of design variables, a design can be 
optimized to better perform a particular mission. A mesh manipulation method may be used to 
manipulate the geometry to minimize the function or modify the volume grid to improve the 
accuracy of the solution. 
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2.0 BACKGROUND 

The gradient in an unstructured element is derived by manipulating the Divergence Theorem 
(often alternately referred to as the Gauss Divergence Theorem or, in 2D, as Green’s Theorem). 
The Divergence Theorem states that if there is a solid region (i.e., a control volume) whose 
boundary surface has positive orientation (outward facing surface normals, n ) and F  is a vector 
field whose component functions have continuous partial derivatives on an open region 
containing the control volume (Ref. 8), then:  

 F dV F ndS     (2.1) 

2.1 GRADIENTS IN AN UNSTRUCTURED MESH 

Equation (2.1) is the Divergence Theorem for a three-dimensional (3D) control volume. In two 
dimensions, the Divergence Theorem can be simplified to Eq. (2.2). 

 F dA F ndS     (2.2) 

The control volume in 2D is effectively a “control area” but will continue to be referred to as a 
control volume herein. Consider a 2D domain broken up into an unstructured mesh comprised 
of triangles similar to the one shown below in Fig. 3. Each triangle becomes a control volume, 
and the gradient within the control volume (which is treated as constant throughout the control 
volume and discontinuous at the surface of the control volume) can be found by manipulating 
the Divergence Theorem. Note that because the gradient is constant within the control volume, 
the mesh must be refined into smaller control volumes if a more precise gradient is desired in a 
given region.  

 
Figure 3.  Two-Dimensional Triangular Control Volume with Outward Facing Normals 

 

A generic scalar function (denoted as  ) is used to illustrate the process for calculating the 
gradient in a triangular control volume. Any scalar function that is continuous in the region can 
be calculated using the following methodology. The gradient of a scalar function is a vector 
function. In two dimensions, this gradient can be written as: 
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The average values of the components of the gradient in a 2D control volume can be calculated 
using Eq. (2.3).  
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ny









  
         

    

  
         

    

    

      

x

y

1 1dA n dS
x A x A

1 1dA n dS
y A y A

 


 


 
 

 

 
 

 

 

 

 

Dropping the overbar for simplicity, with the understanding that the gradient is treated as 
constant within the control volume, the equation for the gradient becomes: 

 
x

y

1 n dS
x A

1 n dS
y A









   
   
     
   
      





 (2.4) 

For a triangular area, the surface integrals shown on Eq. (2.4) can be discretized by summing 
the values of the integrand on each of the triangle’s three edges. Using the x-component for 
example, the gradient is discretized in Eq. (2.5). 
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3

x i xi i
i 1

1 1 ˆn dS n
A A

 


   (2.5) 

In Eq. (2.5), i  is the average value of the scalar over the edge and can be calculated as the 
average of the values of the two nodes that makes up the face or as the average of the value at 
the two cell centers on either side of the face. It will be shown that using the nodal values adds 
simplicity to the final equations.  xin̂  is the x component of the surface unit-normal vector for 

face i. The unit-normal is normalized by i   which is the length of face i. A nonhatted n will 
indicate a nonunit normal vector component, which is found using Eq. (2.6). 

 

xi
xi xi xi i

i

yi
yi yi yi i

i

nˆ ˆn n n

n
ˆ ˆn n n

   


   


 (2.6) 

The normal vectors for each of the three edges are calculated as follows: 

 
x1 3 2

x2 1 3

x3 2 1

n y y
n y y
n y y

 

 

 

   
 

 

 

y1 3 2

y2 1 3

y3 2 1

n x x

n x x

n x x

  

  

  

 (2.7) 

The value of the gradient on each edge will be treated as the average of the value at the two 
nodes that define the edge (note from Fig. 3 that the edge number corresponds to the node 
opposite the edge) and will be designated by an overbar.  

 

 

 

1 2 3

2 1 3

3 1 2

1
2
1
2
1
2

  

  

  

 

 

 

 
Using the numbering convention from Fig. 3 results in the following equation. 

     
3 3

i xi i i xi 2 3 x1 3 1 x2 1 2 x3
i 1 i 1

1 1 1 1 1 1n̂ n n n n
x A A A 2 2 2


       
 

  
         

  
 

 

Rearranging this equation generates Eq. (2.8): 

 
      

      

2 3 x1 3 1 x2 1 2 x3

2 3 y1 3 1 y2 1 2 y3

1 n n n
x 2A

1 n n n
y 2A


     


     


     




     



 (2.8) 
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Rearranging Eq. (2.8) gives the most common form for the gradient component equations.  

 
      

      

x2 x3 1 x3 x1 2 x1 x2 3

y2 y1 1 y3 y1 2 y1 y2 3

1 n n n n n n
x 2A

1 n n n n n n
y 2A


  


  


     




     



 (2.9) 

Using the fact that the normals sum to zero – which can be easily seen from Eq. (2.7) – Eq. 
(2.9) simplifies to Eq. (2.10), and the derivatives from Eq. (2.10) are used to form the 2D 
gradient of the scalar, which is shown in Eq. (2.11). 

 
 

 

x1 1 x2 2 x3 3

y1 1 y2 2 y3 3

1 n n n
x 2A

1 n n n
y 2A


  


  


   




   



 (2.10) 

 x1 1 x2 2 x3 3

y1 1 y2 2 y3 3

n n n1x
n n n2A

y



  


   

 
    
           
  

 (2.11) 

2.2 LAPLACE AND POISSON’S EQUATION 

A large segment of this report deals with the Winslow elliptic smoothing equations, which are 
derived in detail in Appendix B and discussed in further detail in Section 5.0. The Winslow 
equations are used to ensure smoothness in a computational mesh and are derived by applying 
the Laplacian (with respect to the physical mesh coordinates) to the computational coordinates. 
Because this system of equations is based on Laplace’s equation (for a homogenous system) or 
Poisson’s equation (for a nonhomogeneous system) it is interesting to compare it with other 
systems that follow the same laws. 

Some other systems where the Laplacian is used are the steady-state heat equation  2T 0   
and the velocity potential equation. When a flow is steady, irrotational, and isentropic, the Euler 
equations can be simplified into the potential velocity equation, and it can be observed that 

2 0   and 2 0   where lines of constant  are known as streamlines and lines of constant 
  are known as equipotential lines.  In this situation  is the equipotential function and  is the 
so-called stream function, defined so as to satisfy continuity identically (Ref. 9).  

The equipotential function and stream function are developed by looking at the continuity 
equation for incompressible flow.  

 
u v 0
x y

 
 

 
 (2.12) 
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The equipotential function, , is defined such that u
x



  
and v

y




. Plugging these 

relationships into Eq. (2.12) gives Laplace’s equation for , which is 2 0  . If the stream 

function, , is defined such that u
y





and v
x


 


, then the continuity equation is identically 

satisfied:  

2 2u v 0
x y x y x y

    
   

       

This relationship can now be plugged into the equation for vorticity  z  and, if the flow is 
irrotational, the result is again Laplace’s equation: 

 z
u v
y x


  

   
  

 (2.13) 

2 2

z2 2y x
 


 

  
   

2
z     

 2 0   (2.14) 

It is interesting to examine a flowfield generated using the velocity potential equations, such as 
the one shown in Fig. 4, where the darker blue lines are streamlines, and the lighter blue lines 
are equipotential lines. The lines of constant   and constant   form a system similar to what 
would be expected when generating a mesh that is smoothed using the elliptic smoothing 
equations (also based on Laplace’s equations).  

 
Figure 4.  Flowfield Generated Using the Velocity Potential Equation 
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2.3 LAPLACIAN SMOOTHING VS. WINSLOW SMOOTHING  

Prior to work done by Knupp, smoothing techniques on unstructured meshes were dominated 
by Laplacian smoothing because of its generality and ease of implementation. However, Knupp 
felt that the additional work of implementing the Winslow elliptic smoothing equations was worth 
the effort because of the robustness against grid folding that is achieved by using the Winslow 
equations (Ref. 10). In Laplacian smoothing, node positions are determined by solving the 
Laplacian of the physical coordinates with respect to the computational coordinates.  In two 
dimensions, this becomes: 

 

2 2
2

2 2

2 2
2

2 2

x xx 0

y yy 0

 

 

 
   

 

 
   

 

 (2.15) 

Laplacian smoothing is easy to implement because the position of a node can be solved as the 
average of the positions of the N neighboring nodes: 

 
N 1

n m
m 0

1x x
N





   (2.16) 

Although Laplacian smoothing is easy to implement, its usefulness is limited by the fact that it 
sometimes results in mesh folding/spillover, and no mathematical guarantee against such 
folding can be constructed (Ref. 10). The Winslow equations are obtained by requiring that the 
computational coordinate variables ( and ) be harmonic functions and then interchanging the 
dependent and independent variables in the corresponding Laplace equations. That is, 
Laplacians of the computational space are now dealt with in respect to physical space, as 
shown in Eq. (2.17). 

 

2 2
2

2 2

2 2
2

2 2

0
x y

0
x y

 


 


 
   

 

 
   

 

 (2.17) 

The  derivation of the Winslow equations from the above Laplace equations (Eq. [2.17]) is 
discussed in detail in Appendix B, but it is worth noting that the technique that was used by 
Knupp was to let a local discrete uniform computational space for a node with a valence count 
of N be given by Eq. (2.18) and then letting the physical coordinates of the nodes be a function 
of the computational space coordinates:  x x ,   and  y y ,  .  

 m m

m m

cos
sin

 

 




 (2.18) 

 where: 2 m
N


    
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By assuming that there exist smooth functions,  x x ,   and  y y ,  , on the local 
computational space and that these functions can be approximated about  the origin by a Taylor 
series expansion, the expansion can be used to approximate the first and second derivates of x 
and y that are needed to construct the necessary coefficients of the Winslow equations.  

3.0  ISOTROPIC WINSLOW SMOOTHING 

3.1 ELLIPTIC SMOOTHING 

Winslow smoothing is the term commonly used to describe the method of elliptic mesh 
smoothing based on manipulating a mesh (structured or unstructured) using the Winslow elliptic 
smoothing equations. The Winslow equations, which are derived in detail in Appendix B, are 
found by taking the Laplacian of the computational space coordinates with respect to physical 
space. 

 
2

2

0
0





 

 
 (3.1) 

The Laplacian follows the Min/Max principle, which says that given a scalar field over a region R 
that satisfies Laplace’s equation, 2 0  , the value of a nonconstant scalar function, ,  cannot 
attain its maximum or minimum in the interior. This can be deduced from the fact that Laplace’s 
equation, which is said to be harmonic, has the property that the average value over a spherical 
surface is equal to the value at the center of the sphere (Gauss’s harmonic function theorem) 
(Ref. 11). Suppose that one wishes to solve Laplace’s equation in any region R. Consider any 
point p inside R and a circle of any radius r0 (such that the circle is inside R). Let the value on 
the circle be f(). If Laplace’s equation holds, the value at any point is the average of the values 
along any circle of radius r (lying inside R) centered at that point.  The proof is by contradiction. 
Suppose the maximum or minimum was at point p as illustrated in Fig. 5. The value at point p 
should be the average of all points on any surrounding circle, such as the one with radius r0; it is 
impossible for the value at p to be larger or smaller than the maximum or minimum surrounding 
point. 

 
Figure 5.  Region Surrounding a Control Volume 

 
The Winslow equations are derived by transforming the Laplacian of the computational space 
coordinates with respect to physical coordinates such that the equations are now with respect to 
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computational coordinate and the physical coordinates are now the dependent variables. This 
transformation is necessary because it is generally the physical coordinates that will be modified 
using elliptic smoothing. The coordinates of the computational space need to be defined (either 
implicitly or explicitly) and can then be further manipulated to affect the physical mesh as 
required. The Winslow equations are constructed such that the dependent variables are now the 
physical coordinates and the partial derivatives are now with respect to the computational 
coordinates. This is useful because it is the physical coordinates that will be modified using 
elliptic smoothing. The Winslow equations, in the form most relevant to the work performed 
herein, are shown below as Eq. (3.2) with the coefficients shown as Eq. (3.3). 

 

2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
   

  
   

  
  

   

  
  

   

 (3.2) 

 

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

 (3.3) 

 

3.2 VIRTUAL CONTROL VOLUMES 

In order to explore the computational space of a two dimensional unstructured mesh, consider a 
small subsection of a mesh comprised of triangles such as that shown in Fig. 6. There are three 
internal nodes (marked as: ). Unlike structured grid methods, unstructured methods have 
not traditionally had a well-defined computational space associated with the physical space. 
While a global unstructured computational space remains elusive, nodes in an unstructured 
mesh can be mapped to an individualized computational space based on virtual control volumes 
decoupled from one another in computational space. (They remain loosely coupled through their 
relationship in physical space.) The computational space that is suggested by Karman et al 
(Ref. 12) is one in which the node in question lies at the center of a virtual control volume based 
on a regular (equiangular) polygon whose vertices intersect a unit circle. For each of the internal 
nodes shown in physical space in Fig. 6, the corresponding computational space can be seen in 
Fig. 7.  

Defining the computational space in this way lends itself well to solving the Winslow equations 
(especially in inviscid regions where an isotropic mesh is desired) and allows the equations to 
be solved even if the physical grid is inextricably tangled. The computational space (space) 
shown in Fig. 7 is based on the valence count of the node in physical space, which is mapped to 
the center of a regular polygon whose vertices intersect a unit circle. The nodes in this figure are 
color-coordinated to the nodes in physical space in Fig. 6. 
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Figure 6.  Subsection of an Unstructured Mesh 

 

 
Figure 7.  Virtual Control Volumes in Computational Space 

 
3.3 DISCRETE FORM OF WINSLOW EQUATIONS 

The discretization of the Winslow equations focuses on the Laplace form of the equations (i.e., 
the homogeneous equations without any forcing functions). The justification for this is that a 
desired grid spacing that might incline a user to use the Poisson form of the equations can also 
be generated by manipulating the computational space, so forcing functions become 
superfluous. The Laplace form of the Winslow equations for x and y (using condensed notation 
for the derivatives) are x 2 x x 0      

 and y 2 y y 0       .  

The logic described in this section is used to get the Winslow equations in a form that can be 
used to solve the overall global system consisting of all nodes in a region that is to be 
smoothed. (Note that the physical coordinate in the x direction is used in the following derivation 
but that the derivation also applies to the gradients of y with respect to  and as well.)  

Because the Winslow equations are cast in computational space, the gradient operator    will 
be defined such that when operating (through the dot product) on a vector in computational 
space the results are as shown with Eqs. (3.4) and (3.5). 
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x

F F x x
x


 

  

   
    

  
 (3.4) 

 

 

 

 

x
ˆ ˆF F x 0 x F n x n

0

x
ˆ ˆF F x 0 x F n x n

0

0
ˆ ˆF F 0 x x F n x n

x



   



   

   








  
        

 

  
        

 

  
        

 

 (3.5) 

The Winslow equations in a two-dimensional control volume can be written in integral form as 
shown as Eq. (3.6). The logic illustrated in Eq. (3.5) combined with the divergence theorem from 
Section 2 generates the homogeneous Winslow equations in terms of the surface integral over 
the surface of the control volume. This is shown as Eq. (3.7): 

 
 

 
A

A

x 2 x x dA 0

y 2 y y dA 0

  

  

  

  

  

  




 (3.6) 

 
 

 

ˆ ˆ ˆx n 2 x n x n dS 0

ˆ ˆ ˆy n 2 y n y n dS 0

     

     

  

  

  

  




 (3.7) 

The virtual control volume for a node with a valence count of four, such as the node represented 
as  in Fig. 6, is shown in Fig. 8. The vectors t1 through t4 in Fig. 8 are the nonunit normal 
vectors for the surface of the overall virtual control volume. As will become clear when the 
equations are further expanded, t is used instead of the more typical n when describing the 
overall surface normal vectors because these vectors need to be distinguished from the normal 
vectors of the individual triangular elements that comprise the control volume (which are used to 
calculate the gradients in the control volume).  

 
Figure 8.  Virtual Control Volume for a Valence-Count 4 Node 
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Figure 9.  Control Volume for a Single Valence-4 Node Exploded Into its Individual 

Triangular Components  
 

In Fig. 9, the control volume from Fig. 8 is shown exploded into the triangular sectors that make 
up the overall control volume. The nonunit normal vectors for each of the triangles comprising a 
control volume are illustrated in Fig. 9. The variable t is the nonunit surface normal vector of the 
overall control volume (i.e., i i

ˆt t d where it̂  is the unit normal vector and d  is the length of 
face i). The discretized Winslow equation (for x) defined for a given control volume with a 
valence count of N (i.e., N is the number of neighboring nodes and thus the number of triangles 
comprising the control volume) is shown below as Eq. (3.8). 

 
N

i 1 i

ˆ ˆ ˆˆ ˆ ˆx n 2 x n x n dS x t 2 x t x t d 0                


          

 
N

i 1 i

x t 2 x t x t 0       


      (3.8) 

Expanding this summation for a node with a valence count of 4, such as the central node shown 
in Figs. 8 and 9, gives: 

4

i 1 i

x t 2 x t x t 0       


      

1 2

3 4

x t 2 x t x t x t 2 x t x t

x t 2 x t x t x t 2 x t x t 0

           

           

     

     

          

            

 

The discretized integral expanded above is the integral for the central node’s entire control 
volume, whose surface has been discretized into four line segments. However, the elliptic 
smoothing equations apply to an arbitrary control volume, so the argument can be made that 
the only way for this integral to be zero in general is if the integrand is zero.  Another way to 
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think about this is that the discrete form of the Winslow equations has to apply everywhere in 
the domain, both globally and locally. Thus, for each of the sectors (the individual triangles in 
discretized space) of the control volume, the following equations apply: 

 
x t 2 x t x t 0
y t 2 y t y t 0
     

     

  

  

  

  
 (3.9) 

The Gradient equations from Section 2 can be applied to get the values of the gradients (with 
respect to the computational coordinates) in each triangle.  

 
 

 

1 1 2 2 3 3

1 1 2 2 3 3

1x n x n x n x
2A
1x n x n x n x

2A

   

   

   

   

 (3.10) 

 

 

 

1 1 2 2 3 3

1 1 2 2 3 3

1y n y n y n y
2A
1y n y n y n y

2A

   

   

   

   

 (3.11) 

In the equations for the gradients, 1n 2n and 3n  represent the  component of the nonunit 
normal vector of the three sides of the triangle and likewise for . Using the gradient 
relationships from Eqs. (3.10) and (3.11) in Eq. (3.9) and multiplying by -2A (which can be done 
because no forcing functions are being used and the equations are homogeneous) results in 
Eq. (3.12).  

 

   

 

   

 

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

n x n x n x t 2 n x n x n x t

n x n x n x t 0

n y n y n y t 2 n y n y n y t

n y n y n y t 0

       

   

       

   

 



 



    

   

    

   

 (3.12) 

Rearranging Eq. (3.12) gives the Winslow equations in a form that allows them to be solved for 
the central node (x1,y1) using an iterative method such as the Point Implicit method. This final 
form is shown as Eq. (3.13). 

 

   

 

   

 
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x n t 2 n n t 0

y n t 2 n t n t y n t 2 n t n t

y n t 2 n t n t 0

           

    

           

     

     

  

     

  

    

   

    

   

 (3.13) 
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The values in parentheses in Eq. (3.13) can be thought of as weights for the Winslow equations 
at each node, and the two equations shown in Eq. (3.13) can be rewritten in matrix form as 
follows: 

1 11 2 12 3 13

1 21 2 22 3 23

x w x w x w 0
y w y w y w 0

  

    

 13 311 1 12 2

23 321 1 22 2

w 0 xw 0 x w 0 x
0

0 w y0 w y 0 w y
          

            
           

 (3.14) 

To solve the overall system, a global coefficient matrix is constructed where each element of the 
global matrix is a 2 2 matrix and each row of the global matrix represents a single node in the 
system. The values of the elements of the row associated with a given node are constructed by 
using the values of w11 and w21 as contributions to the diagonal element of the row (the central 
node) and the values of w12, w22, w13, and w23 as contributions to the off-diagonal elements. 
Refer to Fig. 9 and it becomes clear that the contributions for each triangle making up the 
control volume for a node are being summed to satisfy the integrals first shown as Eq. (3.7) and 
then discretized in Eq. (3.8).  

A node with a valence count of 4, such as the central node shown in Fig. 9, will have a control 
volume comprised of 4 triangles, each of which will have a vertex that represents the central 
node and two vertices that represent two of the central node’s neighbors. The local numbering 
convention used for each of the triangles is that the central node is node number 1 and the two 
neighboring nodes are numbered node 2 and node 3 based on the right-hand rule. The weights 
for each of the nodes in each of the triangles are calculated based on the normal vectors and 
the Winslow coefficients for each triangle. (The gradients, and thus the coefficients, are treated 
as constant within each triangle.) When the contributions for each of the triangles have been 
summed up, the off-diagonal contributions (w12, w22, w13, and w23) can be moved to the right-
hand side of the global equation, and central node values (w11 and w21), which are on the 
diagonal, can be solved in an iterative fashion.   

3.4 ISOTROPIC WINSLOW EQUATIONS APPLIED TO FLAT PLATE 

A two-dimensional flat plate mesh was created using the Gridgen software package (Ref. 13). 
This mesh (shown in Fig. 10) closely resembled a mesh described in Ref. 14 which explored the 
area of mesh movement but used entirely different techniques that were based on the Linear 
Elastic equations. Three cases were examined using the mesh from Fig. 10: rotation, 
translation, and a warping of the flat plate surface. The results from these three cases are 
shown in Fig. 11. For each of the cases in Fig. 11, the mesh is shown on the left after the inner 
surface is moved but before smoothing has been performed, and then on the right after 
smoothing has been performed.  
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Figure 10.  Refined Symmetric Flat Plate Mesh 
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Figure 11.  Results from Applying Winslow Equations to Flat Plate Mesh That has Been 

Rotated, Translated, and Warped into a Semi-Circle 
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Although all of the grids in Fig. 11 look relatively good, the mesh where the flat plate has been 
warped into a semi-circle illustrates the need to have the ability to move boundary points if a 
surface near another boundary is going to be modified. The mesh near the right endpoint of the 
flat plate is shown in Fig. 12 and again in a close-up view in Fig. 13. The close-up in Fig. 13 
follows two sets of points (marked as black and blue dots) before and after mesh movement is 
performed and shows the difficulty in trying to wrap the mesh around the new geometry while 
retaining the original connectivity and outer surface grid spacing.  

In Fig. 13 it can be seen that the smoothing equations attempt to wrap the two lines of 
connectivity around the warped flat plate, but in some areas the spacing and limited connectivity 
between the two lines in not adequate to generate a high-quality mesh. Before the flat plate is 
warped, there is adequate space between the two sets of nodes to accommodate the 
connectivity between the sets. However, after the flat plate is warped and the mesh has been 
smoothed, the two sets of nodes are driven together in a way that makes it difficult for valid 
connectivity to be maintained. 

 
Figure 12.  Lines of Connectivity Between an Inner Boundary and an Outer Boundary 
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Figure 13.  Connectivity Path Between Surface and Outer Boundary Before and After 

Surface Modification 
 
 

3.5 ISOTROPIC WINSLOW EQUATIONS APPLIED TO NACA0012 AIRFOIL 

It should be noted that although isotropic Winslow equations have significant limitations, there 
are also many situations in which they are extremely valuable tools for mesh manipulation. One 
of these situations is to smooth the inviscid mesh of a body that has been moved or deformed in 
some manner. Another situation where the isotropic Winslow equations can add significant 
value is in adaptive mesh refinement where h-refinement is employed. 

A NACA0012 airfoil is used to illustrate the implementation and value of the isotropic Winslow 
grid smoothing algorithms. The airfoil, which had an initial angle of attack of 0 deg, was rotated 
to a nose-down position of 60 deg and the mesh was smoothed. The grid before and after the 
rotation can be seen in Figs. 14 and 15. Note that after the initial rotation, the mesh is 
completely invalid. The boundary points associated with the airfoil surface were moved, but all 
of the interior points remained stationary, which resulted in a mesh containing extreme grid 
crossing and skewness. This is not an issue when structured grids are utilized because 
structured grids have an implicit computational space that is not invalidated by an invalid 
physical mesh as long as the grid connectivity does not change. Likewise, by using equal 
angle/equal edge-length virtual control volume as the computational space for the unstructured 
mesh, the invalid physical space was not an issue, and a high-quality inviscid mesh was 
generated for the transformed airfoil mesh.  
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Figure 14.  NACA0012 Airfoil Before and After Rotation 

 

 
Figure 15.  NACA0012 Mesh After Winslow Smoothing has Been Performed 

 
The next case that is examined is a transonic case involving a NACA0012 airfoil in a Mach 0.95 
flow. This is the case that was discussed in the Refinement Section. At Mach 0.95 and zero 
angle of attack, the airfoil exhibits a distinct sonic line or “fishtail shock” in its wake. The 
objective of examining this case was to use solution adaptation to adapt the original grid (shown 
in Section 3) with the hope of capturing the shockwaves coming off the airfoil and also the 
secondary shock behind it. This was an excellent case for employing the inviscid Winslow 
equations because the areas of interest (the sonic lines) were in the inviscid region of the mesh 
and thus an isotropic mesh in these regions was adequate. H-refinement schemes determine 
regions of the grid where the solution is underresolved and add elements locally to improve the 
resolution. However, if no smoothing is employed, the mesh can become extremely skewed as 
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more points are added to a given area. Winslow elliptic smoothing can alleviate this tendency 
toward skewed cells as additional nodes are added. 

Figure 16 shows that the adaptation algorithm, coupled with the Winslow elliptic smoothing 
algorithm, successfully captured the shock coming off the airfoil and also the secondary shock 
behind it. As the solution was repeatedly refined, the mesh elements in the area of the shock 
would have become increasingly skewed if no smoothing was employed. It is likely that 
eventually the skewness of the cells would have negatively affected the CFD solution. An 
enlarged image of the final mesh is shown in Fig. 16, and it can be seen that even after many 
refinement iterations, the mesh elements in the region of the shock still have good isotropic 
aspect ratios due to the application of isotropic Winslow smoothing.  

 
Figure 16.  Close-Up of an Isotropic Refined Mesh in the “Fishtail Shock” Region After 

Six Refinement Iterations 
 

4.0  WINSLOW EQUATIONS ON BOUNDARIES 

As noted in the previous section, the Winslow elliptic smoothing equations are derived from 
Laplace’s equations for a parameter distribution over a region. When applied to an unstructured 
mesh, the equations allow interior mesh points to be moved and smoothed to conform to a 
moving mesh. Traditionally, the Winslow equations have been applied only to interior mesh 
points on unstructured meshes. The methodology outlined in this section allows for the 
implementation of the Winslow equations on boundary points as well. The Winslow equations 
deal with derivatives of physical space (x,y) with respect to computational space (). The 
equations, which were first defined in Section 5, are restated below. 
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2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
   

  
   

  
  

   

  
  

   

 

The Winslow equations are applied to a control volume (in computational space) around each 
point in the mesh. By employing the Divergence Theorem, a set of surface integrals, shown 
below, is generated on which the Winslow equations can be solved to smooth the physical 
coordinates of the mesh points. 

2 2 2

2 2

2 2 2

2 2

x x x x x xˆ ˆ ˆ2 dA n 2 n n dS 0

y y y y y yˆ ˆ ˆ2 dA n 2 n n dS 0

  

  

     
      

     
      

        
        

        

        
        

        

 

 

 

In the above equations, n̂ is the   component of the unit normal vector on the surface of the 

control volume in computational space, and n̂ is the   component of the unit normal vector on 
the surface. The surface integrals can be discretized on the surface as follows: 

 

x x xˆ ˆ ˆn 2 n n d 0

y y yˆ ˆ ˆn 2 n n d 0

  

  

  
  

  
  

   
    

   

   
    

   





 (4.1) 

In the discretized equations, d  is the length of a discrete surface segment. Eq. (4.1) can be 
simplified by applying the relationship between the unit normal vector ( n̂ ) and a nonunit normal 
vector (n ) on a given surface segment. Applying this relationship, which is n̂ n  , simplifies 
Eq. (4.1) to Eq. (4.2). 

 

x x xn 2 n n 0

y y yn 2 n n 0

  
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  
  

  
  

   
   

   

   
   

   





 (4.2) 

The 9-point unstructured mesh shown in Fig. 17 gives an example of a control volume on which 
smoothing equations could be applied. In this figure the nodes are numbered in order to 
illustrate the mapping from physical space to computational space, where the Winslow 
equations are applied.  

The only interior node in Fig. 17 is node 8, and the computational space for node 8 is shown on 
the right-hand side of Fig. 17. The computational stencil for the interior point (node 8) is 
relatively straightforward, but no intrinsically obvious stencil exists for a point on a boundary, 
such as node 5. Recall from Section 1 that the computational stencil of a boundary point is 
incomplete. In order to complete the computational stencil for a boundary point, the concept of 
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ghost nodes is introduced. If, for example, it was desired that node 5 in Fig. 17 be allowed to 
float, a ghost point could be placed as shown in Fig. 18. The ghost point, which in this case is 
node 9, allows the control volume in computational space to be closed. The closed virtual 
control volume making up the computational space for the surface node (node 5) can be seen in 
Fig. 18. 

 
Figure 17.  Interior Node (Node 8) in Physical (Left) and Computational (Right) Space 

 

 
Figure 18.  Surface Node (Node 5) and Ghost Node (Node 9) in Physical (Left) and 

Computational (Right) Space 
 

4.1 PLACING GHOST POINTS 

If a node on a surface, such as node 5 in Fig. 18, is to be allowed to float, it will need an 
associated ghost point (such as node 9 in the previous figures) in order to close the virtual 
control volume to which the node is mapped in computational space. The Winslow equations 
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are solved in computational space, and the parameters they solve for are the physical x and y 
coordinates of node 5 based on the physical x and y values of the connected neighboring nodes 
(nodes 6, 7, 8, 4, and 9). Because the value of x and y for node 5 is a function of the values of x 
and y for the connected nodes, it is necessary to place the ghost point at some reasonable 
location in physical space.   

The first attempt at placing the ghost point was to place it at the same location as the associated 
boundary node. However, this had a fatal effect on the boundary points. For example, when the 
top outer boundary of a mesh surrounding a flat plate was allowed to float and the ghost point 
values were set to the values of their associated boundary nodes, the surface points were all 
driven either to the corners of the boundary or, because of the symmetry characteristics of the 
mesh, to the symmetry plane. This effect can be seen in Fig. 19. 

Upon further consideration, it makes sense that this method of placing ghost points would cause 
problems. To illustrate this, consider the control volume shown in Fig. 18, which is in 
computational space. It is apparent from Fig. 18 that node 5 will never be able to reach 
equilibrium with the surrounding points if one of the surrounding points is always being driven to 
the same value as the point at the center. This is what is happening as the attempt is made to 
generate a solution on the flat plate mesh. The central nodes in computational space that 
represent floating-node boundary points will never be able to reach a converged solution, and 
nodes in physical space will be driven in some direction until the solver runs out of iterations. 

 
Figure 19.  Effect of Co-Locating Ghost Points with Their Associated Surface Points 
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Figure 20.  Placement of a Ghost Point 

 
The next attempt at defining the coordinates of the ghost point involved calculating the average 
location of all interior points (PA) connected to a surface point (PS) and then extending the line 
connecting PA and PS. Once the line connecting PA and PS was extended, a ghost point (PG) 
was then placed on this extended line at a distance equal to the distance between PA and PS.  

To graphically illustrate the placement of the ghost points, consider the surface point shown as 
PS in Fig. 20. PS has 3 interior nodes to which it is connected; these points are shown in green 
in Fig. 20. The average interior point (PA) is placed at the average coordinates of the three 
attached points. A line is then formed between PA and PS using the point slope equation of a line 

  1 1y y m x x  
 and a ghost point, PG, is placed on that same line at a distance outside the 

boundary equal to the distance between PA and PS. 

4.1.1 Reflection vs. Extension 

Placing the ghost points using the extension technique described above gave reasonable 
results, but in order to most efficiently place the ghost points, the methodology used for the 
ghost point placement was explored further. As described previously, the first viable method for 
placing the ghost points involved extending a line connecting PA to PS and placing PG on that 
line at a distance equal to the distance between PA and PS. Another possible technique would 
be to use a direct reflection of PA about the boundary surface at PS. The contrast in the 
placement of the ghost point using these two techniques is illustrated in Fig. 21. 
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Figure 21.  Ghost Point Placement: Reflection vs. Extension 

 
Intuitively, from examining Figs. 20 and 21 it appears that placing the ghost point using 
reflection would tend to be a better convention. Looking at the mesh in these figures, which has 
a circular outer boundary, it can be seen that PA is at a location which is generally clockwise 
from PS. However, placing the ghost point using extension will put the ghost point at a position 
which is slightly counterclockwise to PS, thus diminishing some of the force that is driving the 
surface point in the desired direction (toward the average of the connected interior points). By 
using reflection to place the ghost point, the ghost point complements the interior points in 
driving the surface point to a new location rather than counterbalancing them.  

4.1.2 Reflection Methodology 

If reflection is to be used, a matrix of transformation is used to place the ghost point by mapping 
PA onto a reflected position. This transformation, 2 2T :  , has the form: 

    T x R x  (4.3) 

In Eq. (4.3),  R
 is a standard matrix of linear transformation and x  is the coordinate vector of 

the point that is being mapped to a new position.  In order to calculate the standard matrix of 

reflection, one must construct the tangent vector, 1

2

d
d

d
 

  
 

, about which the point will be 

reflected. This tangent vector will represent a line tangent to the boundary surface at the point 
PS.  For a discretized boundary surface, the tangent can be approximated as s sP P   where sP   
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is the point on the surface before PS and sP   is the point on the surface after PS. Using the 
tangent vector of the line tangent to the surface at PS, the standard matrix of reflection can be 
found as Eq. (4.4), and once the matrix of reflection is known, the ghost point can be calculated 
using Eq. (4.5). 

  
2 2 2 2

1 2 1 2
2 2 2 2 2 2

1 2 1 2 1 2

d d 2d d1R
d d 2d d d d

 
  

   
 (4.4) 

  
Gx

G A
Gy

P
P R P

P
 

  
 

 (4.5) 

As expected, using the reflection technique to place the ghost points did improve convergence. 
However, the effect was not drastic. Figure 22 shows a comparison that illustrates the difference 
in using the two techniques. It can be seen that after 1,000 iterations the mesh that is generated 
using the reflection technique (shown in magenta) is “leading” the mesh that is generated using 
the extension technique (shown in blue) as the two meshes advance toward a converged 
solution.  The effect is most obvious by observing lines coming off the ends and the center of 
the flat plate, which are seeking a state such that they are normal to both the inner surface (the 
flat plate) and the outer boundary surface.  

 
Figure 22.  Convergence Comparison for a Mesh Using Extension and Reflection to Place 

the Ghost Nodes 
 

4.2 ANALYTICALLY DEFINED BOUNDARIES 

4.2.1 Flat Boundaries 

The mesh smoothing algorithm that performs the mesh movement is a point iterative scheme 
where the coefficients in the Winslow equations, , , and  must be recomputed at each 
iteration. Each time an iteration is performed, all of the nodes will move to a point that the 
smoothing algorithm considers the optimal placement for that iteration. For interior points, this 
new position will be the starting place for the next iteration. However, for boundary points there 
is an additional step. At each iteration, each boundary point that has moved must be projected 
back to the surface that defines the original boundary. If this is not done, the boundary will begin 
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to wander away from its original position to a position that better satisfies the elliptic smoothing 
equations and will no longer conform to the true boundary.  

The first case that was used to test the methodology for manipulating surface points using the 
Winslow equations was a flat plate surrounded by an unstructured mesh bounded by flat 
(constant in x or constant in y) boundary surfaces. This was the simplest analytical case, where 
the boundaries were defined as being linear and constant in either the x or the y direction. A 
mesh on which this would apply can be seen in Fig. 23. Recall that the Winslow equations are a 
set of two equations (for each node) that are solved for the x and y coordinates. Therefore, in 
the case where the boundary is flat (horizontal or vertical), only one of the equations will require 
a solution. For example, on the top boundary of Fig. 23, the y-coordinate will not be changing, 
so the second Winslow equation will not require a solution. 

 
Figure 23.  Flat Plate Bounded by Flat Boundary Surfaces 

 
The mesh shown in Fig. 23 gave a good initial testbed for looking at the effects of a moving 
boundary, but it is of limited practical value because it has such a rigorous definition of what 
shape the outer boundaries must be (i.e., they must be constant in x or constant in y). For the 
cases with the flat outer boundaries, the implementation of the Winslow equations explicitly took 
this into account. The equations were implemented by only solving the equation for the 
coordinate that was moving. The nodes on the top boundary of Fig. 23, for example, were not 
allowed to move in the y direction, so the Winslow equation for movement in y did not even 
need to be solved. In general, this is not the case, and thus the Winslow equations for both x 
and y must be solved and the surface points must then be manipulated so that they conform to 
the original surface definition.  

4.2.2  Boundaries Defined by Functions  

A treatment for boundaries defined using an analytic function was also briefly explored. It has 
been the author’s experience that the most common analytically defined outer boundary used in 
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two-dimensional external-flow CFD is a circle, so this is the boundary function that was used to 
explore this methodology. A circular boundary for a region where the center is at the origin can 
be defined by the expression 2 2 2x y r   where x and y are the coordinates of a boundary 
point and r is the radius of the outer boundary. Once Winslow smoothing has been performed, x 
and y will be modified, and then 2 2 2x y r  . The boundary point must then be moved to the 
closest point which is on the original boundary surface definition.  It can be shown that for a 
point,  p pp x ,y , the closest point on a circle with radius r is the point of intersection between 
the circle and a ray originating from the origin and passing through point p. This logic can be 
used to keep the boundary points on the defined boundary but is still not ideal because it is not 
general enough to be used on arbitrary boundaries. 

4.3 EXPLICITLY DEFINED BOUNDARIES 

Although meshes used in CFD analysis sometimes have boundaries defined by analytical 
functions as described in Section 6.2, it is more common for boundaries to be defined explicitly 
by a discrete shape, which can be defined in a geometry file. The nature of the geometry file will 
vary, but for two-dimensional analysis the geometry file will generally take the form of a segment 
file where the shape is defined by discrete line segments. Any arbitrary level of accuracy in 
capturing the boundary shape or curvature can be achieved by increasing the number (and 
shortening the lengths) of the line segments in the geometry file. In three-dimensional analysis, 
the file will generally take the form of a tessellated surface file such as a VRML or STL file. 
Because boundary surfaces are most commonly defined in this manner, it is necessary that a 
floating-node boundary on a mesh which is to be smoothed is able to adhere to a boundary 
explicitly defined in this way.  

Projection onto an explicitly defined boundary is achieved by utilizing a C++ “geometry” class 
that was developed by Dr. Steve Karman at The University of Tennessee at Chattanooga 
(UTC). Using this class, the boundary is defined in a geometry file, which is comprised of a 
user-defined number of line segments on the surface. The number of segments will vary 
depending on the desired tolerance of the projection onto the surface. The geometry file on 
which the geometry surface is based can be easily generated using Gridgen by exporting a 
curve (or number of curves) under the INPUT/OUTPUT commands in the Gridgen interface 
(Ref. 13).  

Initially, the floating boundary-node logic was examined using a one-unit-length flat plate in an 
unstructured region surrounded by a circular outer boundary with a radius of 2 . If the flat plate, 
which is relatively close to the outer boundary, is allowed to float within the region while the 
outer boundary is held static, it is difficult for the mesh to maintain high quality. This is because 
the connectivity between the inner and outer boundaries does not change, so the unstructured 
elements must stretch to try to accommodate the new orientation of the inner boundary (the flat 
plate). Eventually the stretching will result in unacceptable levels of skewness in the mesh and 
even negative volumes as mesh lines begin to cross. This is illustrated by Fig. 24, which shows 
the mesh as the flat plate is rotated to 45 and 90 deg while the nodes on the boundaries are 
held static.  
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Figure 24.  Flat Plate Rotated 45 and 90 deg While Boundary Nodes are Held Static. 

 
When the outer boundary nodes are allowed to float and the smoothing logic for boundaries is 
employed, the results for the rotated flat plate are shown in Fig. 25. An interesting comparison 
can be made between the rotated mesh and the mesh in its original smoothed position (i.e., 
when the mesh has been smoothed but the flat plate has not been rotated). The mesh, including 
the outer boundaries, looks the same except that they are rotated 45 and 90 deg.  

 
Figure 25.  Flat Plate Rotated 45 and 90 deg While Smoothing is Performed on Outer 

Boundary Nodes 
 
 

4.4 FLOATING POINTS ON MULTIPLE BOUNDARIES 

The Winslow elliptic smoothing code was extended to be able to handle moving points on 
multiple boundaries. To test this capability, a mesh was generated that had a structure similar to 
the flat-plate mesh, but instead of a flat plate the inner surface was a NACA0012 airfoil shown in 
Fig. 26.  

When dealing with a shape such as an airfoil, which has two portions of the surface that are 
relatively close together, it is necessary to split the surface into an upper and lower portion and 
limit the surface-point projection to the original surface. Otherwise (e.g., at the sharp tail of an 
airfoil) a node from the upper surface can easily be projected onto the bottom surface if the 
node is moved between the two surfaces when smoothing is performed. This undesirable effect 
is illustrated in Fig. 27. 
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A separate boundary condition was added to the code to handle boundaries that were 
comprised of multiple sections. The boundary condition was implemented in such a way that 
when the mesh was smoothed, the endpoints remained in their original position while the 
remaining points on the boundary were allowed to float. This was different from the previous 
implementation where all surface nodes, even the nodes at endpoints, were allowed to float. 
When this new boundary condition was implemented, the mesh surrounding the interior (airfoil) 
surface acted as expected. These results can be seen below in Fig. 28.  

 
Figure 26.  Airfoil Mesh Before and After Smoothing 

 

 
Figure 27. Effect of Projecting Onto the Wrong Surface of a Sharp Airfoil Tail 
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Figure 28.  Close-Up of Mesh Near Interior Surface at Nose and Tail of Airfoil 

 
In Figure 28, the airfoil surface was defined as two distinct surfaces (a lower surface and an 
upper surface) and the surface mesh was confined to its original surface. This eliminated the 
possibility of a node from the upper surface being projected onto the lower surface if the 
smoothing equations placed the node between the two original surface locations.  

As seen in Fig. 28, the modified mesh around the airfoil surface is comprised of what would 
normally be considered very “good” triangles in that they are close to equilateral. However, note 
from Fig. 28 that in order to equalize the angles in the surface triangles, the mesh points were 
driven away from the airfoil surface. This might by a good mesh for an inviscid flow, but if it is 
desired to capture the viscous effects of a flow within a viscous boundary layer, this will have a 
negative impact on capturing the correct characteristics of the flow in this region. To alleviate 
this effect, the smoothing logic must be modified such that the computational space (which 
currently utilizes equal angles) can be utilized to try to better retain the characteristics of the 
original mesh. This is discussed in detail in Section 7.  

4.5 MULTIPLE-ELEMENT AIRFOIL 

4.5.1 Airfoil Rotation 

The final case that was examined to explore the effects of applying the Winslow equation to 
boundaries was to apply Winslow elliptic smoothing to a multi-element airfoil. The airfoil that 
was employed for this purpose was the 30P30N multi-element high-lift airfoil. The 30P30N is a 
three-element airfoil consisting of a central airfoil section with a flap section in the rear and a slat 
section in the front. The mesh that was used was a relatively dense mesh with 23,012 mesh 
points and 44,437 triangular elements. The original configuration of the airfoil was with the flap 
and slat extended (the high-lift configuration); the entire mesh can be seen in Fig. 29 and a 
close-up view near the airfoil surface can be seen in Fig. 30. 

The 30P30N airfoil was pitched 30 deg counterclockwise, and the surrounding mesh was 
smoothed using the Winslow equations to adapt the flowfield mesh to the new airfoil surface 
position. The mesh was smoothed using both a static outer boundary and a floating-node outer 
boundary, which can be seen on the left and right sides of Fig. 31, respectively. Initially, 
because of the dense mesh and the abundance of levels of connectivity between the inner and 
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outer surfaces, it was unclear whether the outer boundary would be greatly affected by the 
treatment of the outer boundary nodes (static vs. floating). After the cases were examined, it 
was determined that, in fact, the outer boundary was significantly affected. As shown in Fig. 31, 
when a floating-node boundary was employed, the nodes on the outer boundary floated in a 
counterclockwise direction until the final mesh closely resembled the original mesh, but rotated 
30 deg. Four representative outer boundary mesh points are marked in black in Fig. 31 so that 
the rotation can be easily discerned. 

 
Figure 29.  30P30N Airfoil and Mesh 
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Figure 30.  Close-Up of 30P30N Airfoil 

 

 
Figure 31.  30P30N Mesh, Without (Left) and With (Right) Floating-Node Outer Boundary 

 
A close-up of the mesh near the airfoil (before and after the 30-deg pitch) is seen in Fig. 32.  In 
order to test the quality of the mesh, a CFD flow solution was generated using an in-house 2D 
Euler solver for the airfoil at both 0 and 30 deg angle of attack using a freestream Mach number 
of 0.95, and the results are shown in Figs. 34 and 35. The solver did not have any problems 
generating a flow solution on either the zero angle of attack or the mesh that had been rotated 
30 deg and then smoothed using the Winslow equations. 
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Figure 32.  30P30N Airfoil at 0 deg Angle of Attack 

 

 
Figure 33.  30P30N Airfoil at 30 deg Angle of Attack 

 

 
Figure 34.  CFD Solution on a 30P30N Airfoil 

 
4.5.2 Airfoil Slat Movement 

Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of the Winslow 
equations applied to a boundary, it makes sense to look at how two surfaces that are close 
together behave if one of the surfaces is moved relative to the other. For this, the slat at the 
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front of the airfoil is rotated from its original extended (high-lift) position to a retracted position. 
The slat is rotated over two steps, and the change in position can be seen in Fig. 35. 

The mesh was smoothed at each of the two slat rotation steps. The first case that was 
examined was using static nodes on all of the airfoil boundaries. When this was done, the mesh 
between the slat and the central airfoil section became highly skewed. These results can be 
seen in Fig. 37. The next case that was examined involved letting the boundary points on the 
surface of the central airfoil section float as the slat was rotated. This gave a much better mesh 
near the leading edge of the central airfoil section, and these results can be seen in Fig. 38. 

The results from the exploration of the 30P30N multi-element airfoil show one practical “real 
world” case where utilizing the ghost node technique for applying the Winslow elliptic smoothing 
equations to the boundaries of an unstructured mesh resulted in a significant improvement 
compared to the case where static-node boundaries were used and only the interior mesh was 
smoothed. 

 
Figure 35.  30P30N Airfoil with Front (Slat) Section Moved from Extended to Retracted 

Position 
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Figure 36.  Original Slat Position 

 

 
Figure 37.  Slat Movement Using Static Surface Nodes 

 

 
Figure 37.  Slat Movement Using Floating-Node Boundary on Central Airfoil Section  
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5.0  ITERATIVELY ADAPTED COMPUTATIONAL SPACE 

A technique was developed that allows for the smoothing of a viscous mesh with general 
spacing properties even if a viable viscous mesh is not originally available. The technique 
requires that the mesh have a connectivity structure in which each node in the viscous region 
has an associated surface node, as would be the case if a marching technique was used to 
generate the viscous region of the mesh.  The mesh is smoothed in such a way that a desired 
viscous profile can be achieved based on an initial off-body spacing and the geometric 
progression of the viscous layers. The initial mesh that was used to experiment with this new 
technique was an inviscid (isotropic) mesh around a rough airfoil. The mesh is shown below in 
Fig. 39 and, near the airfoil, in Fig. 40. 

 
Figure 38.  Full Domain of Inviscid Mesh Surrounding Rough Airfoil 
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Figure 39.  Inviscid Mesh Around Rough Airfoil Near Airfoil Surface 

 
5.1 NORMAL OFFSET 

Throughout the development of the iteratively adaptive technique and algorithm, the 
computational space that is used as the starting point on which to adapt is an equal angle, equal 
edge-length virtual control volume such as one of the virtual control volumes shown in Fig. 7. 
The initial step in the development of an iteratively adaptive viscous smoothing algorithm was to 
use a geometric progression factor to create the offset in computational space that would be 
normal (orthogonal) to the no-slip surface in physical space. The offset can be defined as the 
distance from the central node in computational space to the point at which the center of all the 
neighboring nodes is located. (A note on terminology: as mentioned in Section 1, the node 
referred to as the central node is the node-of-interest or the node being smoothed.  It is always 
located at the origin in computational space, and the neighboring nodes are translated around it 
to accommodate the characteristics of the physical mesh.) The direction of the normal offset is 
determined by which of the central node’s neighbors is the near-surface node (where near-
surface node refers to the neighboring node either directly on the no-slop surface or on the 
direct path back to the surface). This near-surface node will have a given position in the list of 
neighbors, and that position will determine where the node is positioned in computational space.  

In the case where the associated surface node is located at position 1, the offset in 
computational space will be as shown in Fig. 41. By offsetting the computational space in this 
manner, the distance between the central node in computational space and the near-surface 
node (distance L1) is now less than the distance between the central node and the node 
opposite the surface (distance L2). This gradient in computational space causes the node in 
physical space to move closer to the surface as well.  
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Figure 40.  Computational Space Offset Normal to Viscous Surface 

 
The magnitude of the offset (d in Fig. 41, where the virtual control volume is based on a unit 
circle; i.e., radius = 1) is based on the geometric progression factor (g) and is calculated as 
follows: 
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A little additional algebra gives the equation in terms of the offset, d. 
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 (5.1) 

If nothing but the geometric-progression-based normal offset is used to modify the 
computational space control volumes, a viscous mesh can be achieved without iterative 
computational space adjustment, but in order to get a desired off-body spacing, the number of 
layers in the viscous region would have to be such that the normal distance of the viscous 
region (i.e., the distance from the surface to the edge of the viscous region) was precalculated 
to equal the sum of the progressive distances of each layer. This is a limitation that can be 
overcome by adding a loop into the Winslow solver that recalculates the offset “on the fly” to 
match off-body spacing in the first viscous layer and the progressive spacing in the following 
layers. Consider the mesh shown below in Fig. 42 with an initial off-body spacing of 0.04 and a 
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geometric progression factor of 1.5. This will give the viscous layer distances shown in Fig. 42, 
where p1, p2 and p3 are all associated with the surface node p0. 

After a determined number of smoothing iterations, the normal distances in the viscous region 
(i.e., the distance from the viscous node to the associated surface node) will be compared to the 
desired distances, and if they do not match, the computational space will be adjusted 
accordingly. For example, if the distance d2 is greater than 0.6, the offset will increase. This will 
increase the computational space gradient in the normal direction and draw d2 closer to d1. 
When this technique is applied to the inviscid mesh shown in Fig. 39, the mesh shown in Figs. 
43 and 44 results.  

 
Figure 41.  Mesh Smoothed Using Normal Offset 

 

 
Figure 42.  Rough Airfoil Smoothed Using Normal Offset Computational Space 
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Figure 43.  Close-Up of Rough Airfoil Smoothed Using Normal Offset Computational 

Space 
 

5.2 NORMAL AND LATERAL OFFSET 

As shown in Figs. 43 and 44, the spacing profile of the viscous layers is reasonable. However, 
using only the normal offset algorithm, it is not possible to manipulate the spacing in the lateral 
direction (parallel to the surface), so the nodes in the viscous region do not remain orthogonal to 
their associated surface point. This results in the situation shown in Fig. 45 where the angle, , 
begins to get larger and can result in numerical instability (Ref. 15).  

 
Figure 44.  Normal Offset Computational Space Can Result in Large Angles 

 
The lateral spacing issue is handled by implementing another offset in computational space 
where the new offset is in a direction orthogonal to the normal offset direction. The 
computational space will now look like Fig. 46.  
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Figure 45.  Computational Space with Offsets in Both the Normal and Lateral Directions 

 
There are two possibilities for the lateral offset: normal offset direction 90 deg or normal offset 
direction -90 deg. The direction is based on which side of the surface normal the node is on. 
However, this can be handled implicitly by using the cross product [Eq. (5.2)] of the unit normal 
surface vector ( n ) and the unit vector that passes through the node that is going to be 
smoothed ( v ) (illustrated in Fig. 47). The cross product of two vectors is itself a vector, but 
because two-dimensional meshes are being utilized, the direction will simply be k̂  or ˆk , so the 
value of the cross product can be effectively treated as a scalar value with the direction 
captured by the sign of the scalar.  

 n v  (5.2) 

The cross product defined by Eq. (5.2) is extremely well suited for the task of smoothing a 
viscous node in the lateral direction. It is a powerful tool because it gives information on both 
magnitude and direction. By using the cross product, the initial direction of the lateral offset can 
always be given by the normal direction 90 deg. If the cross product is negative, the direction 
will effectively become -90 deg, so the direction does not have to be explicitly adjusted if the 
node switches from one side to the other side of the surface normal. Also, as the node gets 
closer to the normal direction, the magnitude of the cross product, which is equal to twice the 
area of the triangle formed by the two vectors ( 2 n v A , the area is shown in light blue in Fig. 
47), will get smaller and smaller, so the cross product (multiplied by some relaxation factor) 
intrinsically makes a powerful parameter that can be used to adjust the offset and measure 
convergence. Because the magnitudes of the vectors in Fig. 47 and the radius of the virtual 
control volume have all been normalized to 1, the initial offset can be calculated as the height 

(h) of the triangle formed by the two vectors. The area of a triangle is 1
2

A bh . The base (b) of 

the triangle is 1, so h becomes:  

 2  h Ab n v  (5.3) 
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Figure 46.  Area Representation of Cross Product 

 
As the mesh is smoothed, the computational space for the viscous nodes is adjusted at given 
intervals (e.g., every 100 smoothing iterations). The algorithm that is used to calculate the 
normal and lateral offsets and adjust the computational space accordingly is described by the 
following: 

 The initial normal offset is calculated based on the geometric progression factor (see 
Eq. [5.1]), which is read in as an input.  

 The initial lateral offset is calculated as the distance h (see Eq. [5.3]) based on the 
cross product of the unit surface normal vector ( n ) with the unit vector from the 
associated surface node to the central node ( v ). 

 The normal offset direction is calculated based on the position of the near-surface 
node in the array of neighboring nodes. (For the node in the first viscous layer, the 
near-surface node will be the associated surface node; for a node in the second layer, 
the near-surface node will be the associated node from layer one, etc. For a node with 
six neighbors, if the near surface node is first in the neighbor-array, the offset will be 
away from the 0-deg position; if the near-surface node is second in the neighbor-array, 
the offset will be away from the 60-deg position, etc.)  

 The initial lateral offset direction is determined to be the normal offset direction 90 deg. 
(If the cross product is negative, this will effectively be -90 deg.) 

 At each computational space adjustment iteration the normal offset is adjusted by 10% 
of its original value to target in on the offset that will give the proper off-body spacing. 

 At each computational space adjustment iteration the lateral offset is adjusted by the 
new cross product multiplied by a relaxation parameter to target a position normal to 
the no-slip surface. (A relaxation factor of 0.1 has been found to give good results but 
might need to be decreased as the initial off-body spacing gets closer to the viscous 
surface.)  
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When the algorithm just described is implemented and applied to the rough airfoil, the results 
shown in Figs. 48 and 49 are achieved. 

  
Figure 47.  Rough Airfoil Mesh Smoothed Using Iteratively Adapted Computational Space 

in Viscous Region 
 

 
Figure 48.  Close-Up of Smoothed Viscous Region Near Rough Airfoil Surface 

 
5.3 VISCOUS NACA0012 RESULTS 

To further explore the Winslow equations using iteratively adapted offset computational space, 
the NACA0012 airfoil was employed. The full domain surrounding the NACA0012 airfoil is 
shown in Fig. 50. A close-up of the original mesh is shown on the left side of Figs. 51 and 52. 
The mesh that was used as the starting point for the smoothing was essentially an inviscid 
mesh; however, the mesh was generated using extrusion off the airfoil surface so that the 
connectivity was amenable to treating the nodes in the viscous region as viscous layers.  

The viscous region surrounding the NACA0012 airfoil was specified to have five viscous layers, 
and an off-body spacing and geometric progression factor were also specified. (These values 
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are specified as inputs in a viscous parameter file read in by the code.)  Once all of the viscous 
region parameters were specified, the iteratively adaptive Winslow smoothing algorithm was 
applied to the inviscid NACA0012 mesh. The results are shown on the right side of Figs. 51 and 
52. Figures 51 and 52 illustrate that the iteratively adaptive Winslow algorithm is doing an 
admirable job of meeting the viscous mesh requirements (i.e., mesh spacing sufficient to 
capture a viscous boundary layer and orthogonality of nodes in progressive layers of the 
viscous region). 

 
Figure 49.  Inviscid Domain Surrounding NACA0012 Airfoil 

 

  
Figure 50.  NACA0012 Airfoil Before and After Smoothing 
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Figure 51.  Close-Up of NACA0012 Airfoil Before and After Smoothing 

 
5.3.1 Rotation and Translation 

The Winslow elliptic smoothing equations using an iteratively adaptive computational space 
algorithm were tested on situations where an airfoil (the NACA0012) was moved around within 
the domain. The airfoil was rotated, translated, and then both rotated and translated 
simultaneously. In any of the cases, the mesh can start out as viscous, inviscid, or even an 
unviable mesh with grid crossing and negative volumes. The Winslow equations will cause the 
mesh to conform to the new position and orientation of the airfoil, and the offset computational 
space will maintain the viscous layer regardless of orientation. The results from the mesh 
movements can be seen below in Figs. 53 through 55. 

 
Figure 52.  NACA0012 Rotation Using Winslow Iteratively Adaptive Computational Space 

Algorithm 
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Figure 53.  NACA0012 Translation Using Winslow Iteratively Adaptive Computational 

Space Algorithm 
 

 
Figure 54.  NACA0012 Rotation and Translation Using Winslow Iteratively Adaptive 

Computational Space Algorithm 
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5.3.2 Airfoil Shape Modification 

The next area to be explored was how the equations behaved on a deforming airfoil surface. 
This issue has many practical applications to parametric design where it may be required that 
many designs be examined, but manually generating meshes for each design would be 
prohibitively expensive. 

In many cases, the exact camber of an airfoil (for example) will not be known a priori. A design 
engineer might want to try many different incremental designs. However, the requirement that a 
mesh be generated for each design could potentially be significantly detrimental to the design 
process. By employing the Winslow equations using iteratively adapted offset computational 
spaces, no additional direct mesh generation would be required. The surface can be 
significantly deformed from its original shape and the smoothing equations will conform the 
surrounding mesh to the new shape and maintain the original off-body spacing and desired 
geometric progression. An example of this is shown in Fig. 56. 

Note that even though significant grid crossing occurs when the airfoil shape is modified 
(second illustration in Fig. 56) the iteratively adaptive Winslow algorithm is still able to generate 
a viscous grid with the desired characteristics.  
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Figure 55.  Viscous Mesh Conforming to a Deforming Surface 

 
5.3.3 Change in Reynolds Number 

Another powerful application of the iteratively adaptive Winslow smoothing algorithm would be 
in a case where the required off-body spacing was changing. This is something that is virtually 
guaranteed to be an issue in any kind of testing environment because it will always be 
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necessary to explore properties at different Mach numbers and atmospheric conditions. As 
these conditions change, the required off-body spacing changes as well. The viscous smoothing 
algorithm has the ability to quickly and efficiently change the off-body spacing or geometric 
progression of the viscous layers to accommodate changes to the flow characteristics with very 
little (or none, if the offset is coupled to the flow solution) manual adjustment to the mesh. 
Results are demonstrated below where the mesh starts out having inviscid properties and is 
then adjusted to accommodate different flow conditions.  

The viscous mesh surrounding a NACA0012 airfoil that was seen in the previous examples of 
this section has an off-body spacing (s) of 0.010. For a y+ of 100 and a Reynolds number of 
20,000 (and using a reference length of 1.0) this off-body spacing would be sufficient to yield 1 
grid point in the laminar sublayer (Ref. 16) and thus make this an adequate mesh for examining 
a viscous flow in a very low-speed region using wall functions. The NACA0012 airfoil mesh at 
these conditions is shown below in Fig. 57. 

 
Figure 56.  Mesh with Off-Body Spacing of s = 0.01 (y+ = 100, Re = 20,000) 

 
The mesh shown in Fig. 57 would only be sufficient for capturing a boundary layer on extremely 
low-speed flows. If the speed was increased five-fold (resulting in a corresponding five times 
increase in the Reynolds number) the required off-body spacing for the same y+ (y+ = 100) 
would now be: s = 0.00233. Using the iteratively adapted computational space Winslow 
equations, no new mesh would need to be manually generated. A simple input change 
specifying the new off-body spacing would be sufficient to generate a new mesh with the 
required characteristics. (It might also be necessary to adjust relaxation factors to the 
smoother.) A mesh with characteristics necessary to analyze the flow at the new higher 
Reynolds number is shown in Fig. 58, and a close-up comparison of the two meshes, along with 
the original inviscid mesh, is shown in Fig. 59. 
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Figure 57.  Mesh with Off-Body Spacing of s = 0.00233 (y+ = 100, Re = 100,000) 

 

 
Figure 58.  NACA0012 Mesh Comparison at Varying Reynolds Numbers 
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6.0  REFINEMENT  

Adaptive mesh refinement (AMR) is utilized to manipulate a mesh in such a way that the mesh 
is able to effectively capture the required flowfield characteristics while keeping the number of 
mesh elements below the point where computational expense becomes prohibitive. AMR is 
carried out by adapting the mesh such that particular regions of the mesh are better suited to 
capture some important flow property or properties. This is done by refining the mesh in areas 
where the properties of interest have large gradients while keeping the size of the mesh 
elements relatively large in regions where the flow properties are not changing as rapidly with 
respect to space. 

Three flowfield variables were examined for the purpose of refining (and also derefining) a 
mesh: pressure, velocity magnitude, and Mach number. The CFD code that was incorporated 
into the AMR process was a node-based solver. The flow variables are stored at the nodes, and 
the gradients are calculated using the technique described in Section 2.  

6.1 UNSTRUCTURED ELEMENT DIVISION 

The adaptation scheme that is implemented for the work described in this section is an edge-
based scheme that is able to mark and refine the edges of an element in several ways. An 
adaptation function is used to determine which edges of which elements should be refined. 
Each edge consists of two nodes; a simple average of the gradients on the ends of the edge is 
not a favorable option because in the event where the gradients were high, but in opposing 
directions, they would cancel each other out. The adaptation function that is shown as Eq. (6.1) 
alleviates this problem. 

 1 2 Pˆ ˆr r
Af l

2
   

  (6.1) 

In Eq. (6.1), 1  is the gradient at the first node, 2 is the gradient at the second node, r̂  is the 
edge vector, and pl  is a parameter that is introduced to more efficiently handle length scales. If 

pl is not included, regions in the flow where there are sharp features, such as a shock wave, will 
never reach a point where the adaptation function is not above some value where refinement is 
to take place. In fact, for a shock the gradient will actually increase as the cells are refined 
because the discontinuity remains but now occurs over a smaller distance. The ways in which 
an element can be marked are shown in Fig. 60, and the ways in which an element can be 
refined are shown in Fig. 61. 
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Figure 59.  8 (23) Ways to Mark a Triangle 

 
 

 
Figure 60.  11 Possible Ways to Split a Triangular Element 

 
Because the refinement process is edge-based, there are 8 (i.e., 23) ways to mark a triangular 
mesh element and additional ways to split it up because not all of the markings result in a 
unique refinement. Note that in 3D there are 6 edges for a basic element (a tetrahedron), so 
there are 64 (i.e., 26) ways to mark the element and additional ways to split it up.  

6.2 STATIC REFINEMENT 

The first case that was examined for the purpose of demonstrating solution-based AMR was a 
transonic case involving a NACA0012 airfoil in a Mach 0.95 flow. At Mach 0.95 and zero angle 
of attack, the flow speed increases to about Mach 1.3 as it traverses the airfoil and then shocks 
down at the tail. However, the flow does not quite shock down to subsonic at that point and 
remains slightly supersonic for several chord lengths behind the airfoil. The flow then shocks 
down below the speed of sound, causing the airfoil to exhibit a distinct sonic line or “fishtail 
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shock” in its wake. This is illustrated in Fig. 62. The objective of examining this case was to 
adapt the original mesh (shown in Fig. 62) to the flow with the hope of capturing the shock 
waves coming off the airfoil and the secondary shock behind it.  

  
Figure 61.  Flowfield Around a NACA0012 Airfoil at Mach 0.95 Along with the Initial 

Unrefined Mesh 
 

Three different flow parameters were examined: Mach number, pressure, and velocity 
magnitude. Successful adaptation can be performed with all three parameters, but Mach 
number is focused on here because it captured some elements of both pressure and velocity. 
Shown below in the images comprising Fig. 63 is a progression of the grid over six refinement 
passes. Figure 62 was generated using Mach number as the flow parameter for which 
adaptation was performed. Figure 62 shows that the adaptation algorithm successfully captures 
the shock coming off the airfoil and the secondary shock behind it.  
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Figure 62.  Progression of Grid Refinement/Derefinement 

 
6.3 DYNAMIC REFINEMENT 

After a steady-state case was performed, dynamic moving body cases were also examined. 
These cases used both AMR and elliptic smoothing to generate quality meshes at each step in 
the refinement process. In addition to refinement, derefinement was also implemented into the 
process with limited success. Derefinement is difficult to implement because, unlike refinement 
where overrefining a mesh may hurt performance but will probably not be significantly 
detrimental to a solution, aggressive derefinement can easily completely decimate a mesh to 
the point where no solution can be generated. However, derefinement can be important, as 
illustrated by the case described below which involves a NACA0012 airfoil at Mach 0.8.  
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Figure 63.  NACA0012 Airfoil at 0 deg Angle of Attack and at 10 deg Angle of Attack 

 
The solutions to the flow over a NACA0012 airfoil at the two positions shown in Fig. 64 show 
that the shock moves significantly on the body of the airfoil when the airfoil is rotated. Figure 64 
shows the case where the grid is adapted based on Mach number at zero angle of attack and 
the airfoil is then rotated -10 deg. At -10 deg angle of attack the shock is significantly further 
back on the body of the airfoil compared to the 0-deg case. If a solution on the initial mesh is 
used to perform adaptation and the airfoil is then rotated, Winslow smoothing will allow a valid 
mesh to be created for the new position, but if no derefinement is performed, the refinement 
from the 0-deg case will remain, even though the shock is no longer in this vicinity. The wasteful 
nature of this residual refinement is illustrated in Fig. 65. 

 
Figure 64.  Grid Adaptation on Rotated Airfoil 

 
The final case that was examined was that of a rotating airfoil. A NACA0012 airfoil, this time at a 
Mach number of 0.8, was rotated about the quarter chord, and the mesh was refined at each 
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rotation step. The airfoil was rotated up 1.5 deg, rotated back to zero, rotated down 1.5 deg, and 
then rotated back to the initial position.  

The images in Fig. 66 show the refinement progression as the airfoil is pitched up and then 
down and then back up to the original position. For this case the derefinement capability was 
used very sparingly, and thus as expected there is a significant residual refinement as the angle 
of attack changes. More aggressive derefinement was tried, but the mesh in the upstream 
region, which had negligible gradients compared to the flow around the body, was always 
adversely affected. Despite the appearance of residual refinement and the associated 
degradation of computational efficiency, Fig. 66 shows that the shock is being well refined and 
that the smoothing technique is working well to rotate the interior points of the mesh as the 
airfoil surface boundary is rotated. 

 
Figure 65. NACA0012 Refinement with Varying Pitch (a) 
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Figure 65.  NACA0012 Refinement with Varying Pitch (b) 

7.0  OPTIMIZATION 

An efficient way to perform a design optimization on a 2D mesh is to couple an optimization 
code with a 2D CFD solver and a mesh movement/refinement code. The concept of 
optimization is based on finding a minimum of some function. There are several methods for 
finding minimums of a function; one such method is the Newton-Raphson technique. A design 
reaching an optimum state implies that the function for which the optimization has been 
performed has been minimized and the derivates of the function are zero. A simple one-variable 
example, such as that shown in Fig. 67, would be the function 2f (x) x 2  . The minimum can 
be found at x 2   at which point f (x) 0  . For a practical optimization, the function that is 
minimized is a cost function. The cost function, which is discussed below, will generally be a 
multivariate function driven by multiple design variables.   
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Figure 66.  One Variable Example of a Function and Its Derivative 

 
A common optimization method, such as used by the design code Port (developed by Bell 
Laboratories) and Dakota (developed by Sandia National Labs) is a trust region method. The 
trust region algorithm approximates only a certain region (the so-called trust region, which is 
locally approximated as quadratic) of a function as opposed to the entire function. When an 
adequate model of the function is found within the trust region, the region is expanded. The 
optimization tool used for the study described herein is Port. The source code for Port is freely 
available, and certain subroutines were stripped out to use directly with an optimization driver 
code that coupled the optimization tool with the CFD and mesh manipulation codes.  

The optimization libraries from Port generally operate as black boxes (though the source is 
available to examine or modify if required). The specific port Library that was called by the driver 
routine was called DMNGB. This subroutine seeks a parameter vector (a vector of all of the 
design variables) that minimizes a continuously differentiable function (the cost function) subject 
to bound constraints. The caller provides a subroutine to compute the cost function and a 
second subroutine to compute the gradients of the cost function.  

It is not the root of the function itself that is being sought, but rather roots of its gradients. To find 
these roots, a second derivative (Hessian matrix for a multivariate function) is necessary. Within 
the Port code, the Hessian (if it is not provided directly) is approximated by a secant (quasi-
Newton) updating method.  

7.1 COST FUNCTION 

For the purposes of optimization, the function that is to be minimized is known as a cost function 
or an objective function.  It is this function that is used to capture the relationship between the 
design variables and the design goals. The cases that were examined for this study were 
external flows over a naca0012 airfoil. The main parameters of interest were lift and drag. The 
cost function that was used to drive the design is shown as Eq. (7.1). 

    
2 2

L DI W L L* W D D*     (7.1) 
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Where: I  =  cost 

 WL  =  lift coefficient (weight) 

 L  =  lift 

 L*  =  target lift 

 WD  =  drag coefficient (weight) 

 D  =  drag 

 D* =  target drag  

7.2 DESIGN VARIABLES AND SENSITIVITY DERIVATIVES 

A design variable is the aspect of the design that is being evaluated and modified to drive a 
design toward a certain behavior. There are infinite possibilities for what can be used as design 
variables. For an airfoil, typical design variables could be camber, thickness, angle of attack, or 
individual positions on the airfoil. It is common to denote the design variable as i .  

For the study discussed here, the shape of the airfoil was manipulated directly by choosing the 
design variables to be the y coordinates of points on the airfoil surface. An important part of the 
optimization process is determining how each of the design variables affects the cost function. 
This is done through sensitivity derivatives, which are the partial derivatives of the cost with 
respect to each design variable (i.e., the change in the cost while perturbing a single design 
variable and keeping all of the other design variables constant). 

The sensitivity derivatives are written as 
i

I





. 

Three methods were explored for generating sensitivity derivatives. They are: 

 Finite Difference 

 Forward Mode Differentiation 

 Reverse Mode Differentiation 

7.2.1 Sensitivity Derivatives Using Finite Difference 

The most straightforward way to generate sensitivity derivatives is to use a finite difference 
approach. In this case, at each iteration (k) in the design process the cost function will be 
calculated using Eq. (7.2). 

    
2 2

(k) L (k) D (k)I W L L* W D D*     (7.2) 

The derivatives of the cost function with respect to each of the design variables are found using 
the chain rule as: 

   L D
i i i

I L D2w L L* 2w D D*
  

  
   

    
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Using the finite difference approach, each of the partial derivatives is found by perturbing i  by 
a very small amount (  ). The design derivatives are discretized and calculated as: 

   (k) (k 1) (k) (k 1)
L (k 1) D (k 1)

i i i(k)

L L D DI 2.0*w L L* 2.0*w D D*
  

 

 

 
   

  
 

This is the partial derivative with respect to a single design variable, so it must be performed for 
each design variable while holding all of the other design variables constant. This can be very 
computationally expensive because at each iteration in the design cycle, a flow solve is required 
to get the cost at iteration (k) and n mesh-movements, and n flow solves are required to 
generate the sensitivity derivatives where n is the number of design variables.  

7.2.2 Sensitivity Derivatives Using Forward Mode Differentiation 

As mentioned in the section above, a problem with using finite difference to get the sensitivity 
derivatives is that it requires so many CFD flow solves (n+1 where n is the number of design 
variables) per design cycle. One way to alleviate this requirement is to use forward mode 
differentiation (also known as direct differentiation or automatic differentiation). Using this 
method still requires the same amount of mesh movements at each design iteration, but 
requires only one full flow solve. For a case that is only concerned with lift, the cost function is: 

       

 

2 2 2 2
L D

2

I C * L L* C * D D* 1.0* L L* 0.0* D D*

I L L*

       

   

Lift, in turn, is the integral of vertical pressure forces over the entire wetted surface area of the 
airfoil and is calculated as the sum of the contributions to lift at each point on the airfoil, which is 
calculated using Eq. (7.3). 

 x yL F n sin F n cos     (7.3) 

In Eq. (7.3)  is the angle of attack of the airfoil, F is the force on the airfoil at a point, and nx and 
ny are the surface normals of the airfoil at that point. Cost is a function of lift, and lift is a function 
of other variables, which are either directly or indirectly related to the state variables (flow 
variables) or the physical geometry variables (mesh variables). The derivatives for the state 
variables and the mesh variables with respect to the design variables can be found directly by 
differentiating the code using the chain rule. 

The starting point is the discrete residual of the system, which will be zero when the system is 
fully converged and the flow solution has reached a steady state. The residual of the system is a 
function of the design variables, the flow variables (which are functions of the design variables), 
and the mesh variables (which are also functions of the design variables). The residual of the 
system can be written as R(Q( ),X( ), ) 0    . Using the chain rule, the derivative of the 
residual for each of the design variables is: 

 
i i i i

dR R R Q R X 0
d Q X   

            
                      

 (7.4) 
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Here, as well as throughout the remainder of this section, the derivatives in square brackets 
represent an array of values while the derivatives in curly brackets represent a vector of values. 
The partial derivative of the residual will be zero because all of the design variables are affecting 
the residual through the mesh and state vectors and not directly (through, for example, varying 
Mach number). This allows Eq. (7.4) to be rearranged into Eq. (7.5), which is the forward mode 
system equation. 

 
i i

R Q R X
Q X 

         
               

 (7.5) 

The derivates of the mesh node coordinates with respect to the design variables are referred to 

as the mesh sensitivities. These are dented as 
i

X





 and are found by differentiating the mesh 

movement code. Once the mesh sensitivities are found, Eq. (7.5) is used to find 
i

Q





. Once 

i

X





 

and 
i

Q





are known, the effect that the design variables have on any other variables in the 

system (effects on surface normals, lift, drag, etc.) can be found using the chain rule. Note that 
R
Q


  
is the partial derivative of the residual (i.e., the flux between elements in the mesh) with 

respect to the state vector while keeping the mesh constant. This is known because these 

values are the flux Jacobian values of the original mesh at steady state. R
X



 is not found 

directly, but rather the entire right-hand side of Eq. (7.5) is found as 
i Q fixed

R





once 

i

X




  
is known.  

7.2.3 Mesh Movement and the Complex Winslow Equations 

In order to get the sensitivity derivatives,
i

I





, the mesh sensitivities, 

i

X





, are needed. 

i

X





is a 

vector of equations for each design derivative. It will have a potentially different value at each 
point in the flowfield, and it represents the change in position of every mesh point in the flowfield 
caused by a change in one of the design variables. In 2D the expanded vector for the mesh 
sensitivities would look like Eq. (7.6). 

 i

i

i

x
X

y






 
   
 
 
 

 (7.6) 

One way that the mesh sensitivities can be found is by utilizing the mesh movement code. The 
design variables for this study were the y coordinates of points on the airfoil surface. In order to 
determine the mesh sensitivities, each of the design variables is tweaked by some small amount 
() and the mesh movement code is run to see how each of the points in the flowfield responds.  
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One problem that can arise when generating mesh sensitivities in this manner is that when the 
perturbation is very small it can result in large subtractive cancelation error. For example, 
consider a case where a central difference was used. (For this example, this would be 
analogous to perturbing the design variable up by some small amount (y + y), down by 
some small amount (y - y), and then looking at how the points in the field reacted.)  

new original

new originali

x x
2 yX

y y
2 y



 
 

  
 
 

   

To illustrate the problem, consider the Taylor series expansion for a central difference scheme: 

   

   

2 32 3

2 3

2 32 3

2 3

y yf f ff (y y) f (y) y
y y 2! y 3!

y yf f ff (y y) f (y) y
y y 2! y 3!

   
       

  

   
       

    

Subtracting the second equation from the first and ignoring higher order terms gives the 
following central difference scheme for a first derivative: 

 
f f (y y) f (y y)
y 2 y
    


 

 (7.7) 

Unfortunately, if y is very small, y+y and y-y look the same to the computer and error can 
quickly increase. Experience has shown that subtractive cancelation error starts to increase as 
y approaches the square root of machine zero (~E-8).  

One way to reduce the subtractive cancelation error is to go into the complex plane. An 
alternate way of computing the first derivative of a function is to consider that function in 
complex space and manipulate the complex Taylor series expansion. If a function is perturbed 
by a small amount    in the complex plane, the complex Taylor series is: 

   
2 3 3

2
2 3

f f ff x i f x i i ...
x x x 3!


  

  
     

    

Rearranging and ignoring higher order terms gives: 

   
2 3 3

2
2 3

real part imaginary part

f f ff x i f x h i
x x x 3!


 

   
     

   

 

The derivative, then, can be calculated as: 
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 

 
 

3 3

3

2

f f Im f x i
x x 3!

Im f x if
x


 


 



 
      

    
 

  

Ignoring the higher order terms gives the alternate formulation for calculating a first derivative of 
a function, which is shown as Eq. (7.8).  

 
 Im f x if

x




    



 (7.8) 

In order to implement the alternated formulation, the mesh movement code is modified to 
operate in complex space and the Winslow smoother is extended to handle a complex (i.e., 
having a real and imaginary part) mesh. The mesh file is modified such that each node has a 
real and imaginary part for its x and y coordinate. The imaginary part of each of the nodes is 
zero with the exception of the node that would be used as the design variable. The design 
variable node now has a y coordinate that had an imaginary part . 

When the mesh movement code is executed in complex mode, it no longer physically moves 
the mesh, but rather calculates a complex part for each of the coordinates. The complex part of 
each of the coordinates is divided by  to generate the mesh sensitivities for a given design 
variable. If a point near the middle of the top surface of the airfoil is perturbed by a small amount 
(d1.0e-10 in the complex plane, the magnitude of the complex part of points in the 
flowfield can be seen (Fig. 68). 

 
Figure 67.  Magnitude of Mesh Sensitivities 
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Once the mesh sensitivities are known, the sensitivities of the state variables can be found by 
solving Eq. (7.5), and the sensitivity derivatives can be calculated and fed to Port to drive the 
optimization. For each design iteration, the mesh movement code must be executed a number 
of times equal to the number of the design variables, but a full CFD flow solve will only have to 
be executed once. For each design variable the mesh movement code will be executed to 
generate the mesh sensitivities, and then a linear system will be solved to generate the state 
vector sensitivities.  

7.2.4 Sensitivity Derivatives Using Reverse Mode Differentiation 

A third method for calculating the sensitivity derivatives is to use reverse mode differentiation. 
For forward mode differentiation, each of the design variables is perturbed, one at a time, and 
then the mesh movement code is executed to get mesh sensitivities. Once the mesh 
sensitivities are known for a given design variable, a linear system is solved to get the 
sensitivities of the state variables, and from this knowledge the sensitivity derivatives are found. 

Forward mode differentiation yields the most information in that once the state variable 
sensitivities are determined, derivatives for anything else can be obtained. Although direct 
differentiation yields a significant amount of information, it can be very costly in cases where 
there are many design variables because Eq. (7.5) must be solved for each design variable. For 
cases where there are many design variables, a more efficient way can be to use reverse mode 
differentiation by employing adjoint methods.  

For this method, the cost function is augmented so that the residual of the solver is included as 
a constraint using Lagrange multipliers. The cost function is a function of the state variables and 
the mesh: I(Q( ),X( ), )   . The augmented equation is: 

T
cI(Q( ),X( ), ) I (Q( ),X( ), ) R(Q( ),X( ), )           

In the equation above, cI is the original cost and  is a vector of Lagrange multipliers (which are 
arbitrary). At steady state, because R = 0, cI I . Taking the derivative of I with respect to one 
of the design variables gives the augmented sensitivity derivative for a single design variable, 
which is shown as Eq. (7.9).  

 Tc c c

i i i i i i i

I I IdI Q X R R Q R X
d Q X Q X      

         
      
          

 (7.9) 

Equation (7.9) is the equation for a single design variable ( i ). The equation for the entire 
system can be manipulated to get:  

T T T TT T
c c c

i

I I IdI Q R X R X R
d Q Q X X     

                         
                                                    
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i

Q




  
is unknown, but since   is arbitrary, 

T
cI R

Q Q

    
   

    

 can be solved such that 

T T
c

i

IQ R
Q Q

      
     

       

 is eliminated. This results in the adjoint equation, shown as Eq. (7.10). 

 
T

cIR 0
Q Q

   
    

    
 (7.10) 

Once the vector of Lagrange multipliers is determined, the sensitivity derivatives can be 
calculated using the augmented cost function for the entire system, shown as Eq. (7.11). 

 
T T T T

c cI IdI X R X R
d X X    

                
                               

 (7.11) 

For a case where all of the design variables are affecting the cost directly through the state and 
mesh variables, this equation can be simplified and written as Eq. (7.12). 

 

T
Tc

Q fixed

IdI X R
d X  

     
     

        (7.12) 

The adjoint equation is a linear system; thus, for the cost of solving a linear system followed by 
a matrix-vector multiply for each design variable, the cost function with respect to all design 
variables can be obtained. Therefore, the adjoint method is efficient when there are many 
design variables and few cost function constraints (e.g., lift and drag).  

7.3 SUMMARY OF SENSITIVITY DERIVATIVES 

Sensitivity derivatives 
i

I


 
 
   

for the optimization can be found three different ways:  

 Finite Difference 

 Forward Mode Differentiation (AKA Direct Differentiation) 

 Reverse Mode Differentiation (AKA Adjoint Method)  

Finite difference is the most straightforward, but it is computationally the most expensive 
because for n design variables it requires n mesh movements and n+1 flow solves at each 
iteration in the design cycle.  

Forward mode differentiation improves on the computational efficiency because at each iteration 
in the design cycle it requires n mesh movements but only requires one flow solve and n linear 

system solutions to solve 
i i

R Q R X
Q X 

         
                

 for 
i

Q





.  



AEDC-TR-10-T-36 

74 Statement A:  Approved for public 
release; distribution is unlimited. 

If there are many design variables, this can still get expensive since the linear system is solved 
in an iterative fashion (using a point iterative scheme for this study) for each design variable, i .  

The most computationally efficient way to solve for the sensitivity derivatives is to use reverse 
mode differentiation. In this case, adjoint methods are employed so that only one linear system 
solve is required. Reverse mode differentiation requires n mesh movements, one flow solve, 

and one linear system solve to solve 
T

cIR
Q Q

   
        

for the vector of Lagrange multipliers

  . It also requires n matrix vector multiplies to solve:  

T T T T
c cI IdI X R X R

d X X    

                 
                                 

This will generally be more efficient than solving multiple linear systems unless the number of 
cost functions is much greater than the number of design variables.  

8.0  CONCLUSIONS 

There are many ways that a region that is to be analyzed using computational methods might 
be discretized. This report focused on breaking up a region of interest using unstructured grid 
methodology (as opposed to structured grid methodology, where the breakup of the domain 
reflects some type of consistent geometrical regularity). Although the focus was on unstructured 
meshes, many of the algorithmic and mathematical techniques found herein owe their origins to 
structured methods. The bulk of this report focused on unstructured mesh smoothing using the 
Winslow equations; adaptive mesh refinement and optimization were discussed as well. 

The Winslow elliptic smoothing equations, which were first applied to structured meshes as far 
back as the 1960s, have started to become powerful tools for smoothing unstructured meshes 
as well. However, no implicit computational space exists for unstructured meshes, and the 
computational space must be explicitly defined. Because the unstructured mesh connectivity 
needs to be explicitly defined and the valence count (the number of connected nodes or 
neighbors) varies throughout a domain, no theory exists to generate a general overarching 
computational space that reflects a consistent geometrical regularity as was done with 
structured meshes. This difficulty was alleviated when it was determined that it was not 
necessary for the entire computational mesh to be constructed as an overarching system of 
nodes and elements, but rather each node in computational space could be treated as an 
individual virtual control volume and coupled only though the coordinates in physical space, 
which were treated as free dependent variables.  

Using these loosely coupled virtual control volumes as the unstructured computational space, 
the Winslow elliptic smoothing equations allow interior mesh points to be moved and smoothed 
to conform to a moving surface or improve a static mesh. Conventionally, the unstructured 
computational space for each of the nodes formulated in this manner is surrounded by 
neighbors using equal angles and equal edge-lengths, and it is necessary that the central node 
in each virtual control volume be fully surrounded by neighboring nodes for the computational 
template to be complete. This makes the Winslow equations ideal for smoothing nonboundary 
nodes in inviscid meshes because the equations drive the mesh elements to display an isotropic 
behavior. However, the convention implementation of the Winslow equations is not well suited 
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for nodes on boundaries or nodes in viscous regions. Research detailed in this report addressed 
these limitations.   

Traditionally, boundary points were held static in their original position, and only interior mesh 
points were permitted to move. However, if a moving surface was in close proximity to a static 
surface, the mesh quality could be significantly degraded. Because the connectivity of the mesh 
was not changing, the mesh elements were often not able to maintain low skew as they were 
stretched to conform to the new surface positions. The problem with applying the Winslow 
equations to a point on a surface is related to the virtual control volume of the surface node in 
computational space. For the equations to be properly solved, the virtual control volume needs 
to have a complete unbroken stencil of neighboring nodes. For a node on a surface, an 
unbroken stencil did not exist. This limitation was remedied by utilizing ghost points outside the 
proper physical mesh domain. Several methods for placing the ghost points were explored, and 
it was determined that the best results occurred by implementing a reflection technique, which 
reflected a composite interior-neighbor location across a line tangent to the boundary at the 
location of the boundary node for which a dynamic floating position was desired.  

The floating-surface Winslow algorithm was tested on several geometries. The first case was a 
flat plate in a domain where the outer boundary was relatively close to the flat plate surface. The 
flat plate was taken through a full range of movements that included translation, rotation, and 
even the deformation of the surface. Valid meshes were generated for all cases. The final case 
that was examined to explore the effects of applying the Winslow equations to the boundaries 
was to apply Winslow elliptic smoothing to a 30P30N multi-element high-lift airfoil. The airfoil 
was pitched 30 deg, and the surrounding mesh was smoothed using the Winslow equations to 
adapt the flowfield mesh to the new airfoil surface position. The mesh was smoothed using both 
a static outer boundary and a floating-point outer boundary. Good results were generated and 
the smoothed mesh was tested further by using it to generate a transonic flow solution.  

Because the goal of analyzing the 30P30N airfoil was to demonstrate the power of the Winslow 
equations applied to a boundary, it made sense to look at how two surfaces that were close 
together behaved if one of the surfaces was moved relative to the other. For this, the slat at the 
front of the airfoil was rotated from its original extended (high-lift) position to a retracted position. 
The mesh was smoothed at each of the two slat rotation steps. The first case that was 
examined was using static nodes on all of the airfoil boundaries. When this was done, the mesh 
became highly skewed in the region between the slat and the central airfoil position. The next 
case that was examined involved letting the boundary points on the surface of the central airfoil 
section float as the slat was rotated. This gave a much better mesh near the leading edge of the 
central airfoil section. 

A conventional implementation of the Winslow equations involves constructing virtual control 
volumes for the computational space for each node using equal angles and equal edge-lengths. 
By implementing the computational space in this way, the Winslow equations smooth the 
physical mesh such that the modified (i.e., smoothed) mesh is highly isotropic and thus ideally 
suited for an inviscid flow. However, a viscous mesh near a no-slip wall is highly anisotropic and 
is thus in direct opposition to the goals of the unmodified Winslow equations. A successful 
methodology for applying the Winslow equations to viscous regions of unstructured meshes was 
to use an iteratively adapted computational space for each of the nodes in the viscous region. 
This technique allowed a mesh with an amenable connectivity structure to be smoothed in such 
a way that it could match a desired viscous profile based on an initial off-body spacing and 
geometric progression of the viscous layers.  
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The Winslow elliptic smoothing equations using an iteratively adaptive computational space 
algorithm were tested in situations where an airfoil (the NACA0012) was moved around within 
the domain. The airfoil was rotated, translated, and then both rotated and translated 
simultaneously. In any of the cases, the mesh can start out as viscous, inviscid, or even an 
unviable mesh with grid crossing and negative volumes. The Winslow equations cause the 
mesh to conform to the new position and orientation of the airfoil, and the offset computational 
space is able to maintain the viscous layer regardless of orientation. The technique was also 
explored on a deforming airfoil surface, which has many practical applications to parametric 
design where it may be required that many designs be examined, but manually generating 
meshes for each design would be prohibitively expensive. Again, a proper viscous mesh was 
generated.  

A final application of the iteratively adaptive Winslow smoothing algorithm was a case where the 
required off-body spacing was changing. This is something that is guaranteed to be an issue in 
any kind of testing environment because it will always be necessary to explore properties at 
different Mach numbers and atmospheric conditions. As these conditions change, the required 
off-body spacing changes as well. It was shown that the iteratively adaptive Winslow smoothing 
algorithm has the ability to quickly and efficiently change the off-body spacing or geometric 
progression of the viscous layers to accommodate changes to the flow characteristics. 

Adaptive mesh refinement (AMR) is utilized to manipulate a mesh in such a way that the mesh 
is able to effectively capture the required flowfield characteristics while keeping the number of 
mesh elements below the point where computational expense becomes prohibitive. AMR is 
carried out by modifying the mesh such that particular regions of the mesh are better suited to 
capture some important flow property or properties. This is done by refining the mesh in areas 
where the properties of interest have large gradients while keeping the size of the mesh 
elements relatively large in regions where the flow properties are not changing as rapidly with 
respect to space.  

Three flowfield variables were examined for the purpose of refining (and also derefining) a 
mesh: pressure, velocity magnitude, and Mach number. AMR was explored on an airfoil that 
exhibited interesting “fishtail” shock characteristics, and the shocks were successfully captured. 
A dynamic case was also explored where the airfoil oscillated about the zero angle-of-attack line 
and the shock’s positions along the airfoil surface were changing. In the dynamic case, 
refinement was carried out successfully, but aggressive derefinement had a negative effect on 
grid quality, so the mesh became less efficient as it was continually refined.    

A shape optimization study was performed in which an optimization code was coupled with a 2D 
CFD solver and a mesh movement/refinement code. The concept of optimization, which is 
based on finding a minimum of some function, was employed to drive the shape of an airfoil to 
exhibit desired characteristics. For this study, the shape of the airfoil was manipulated directly 
by choosing the design variables to be the y coordinates of points on the airfoil surface. Three 
methods were explored for generating sensitivity derivatives: finite difference, forward mode 
differentiation, and reverse mode differentiation. The differences in these three methods were 
discussed as well as the benefits and negative aspects of each. It was determined that under 
most circumstances the most computationally efficient method was to use reverse mode 
differentiation. In this case, adjoint methods are employed so that only one linear system 
solution is required. 

The research and results described herein significantly expand the possible role of the Winslow 
elliptic smoothing equations as related to unstructured mesh manipulation. The methodologies 
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that were explored make the equations applicable to many common situations in fluid 
mechanics for which they traditionally would not have been well suited.  
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APPENDIX A.  METRIC RELATIONSHIPS AND THE JACOBIAN 

Partial derivatives with respect to the two-dimensional computational space coordinates  ,   

can be written as 
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coefficients in these equations are referred to as the inverse grid metrics. Using a condensed 

form for the derivatives (i.e., x
x








 etc.) the above relationships can be written as the 

following system: 
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 (A.1) 

Cramer’s rule allows one to construct the relationship between the grid metrics ( x y x y, , ,    ) 

and the inverse grid metrics ( x , x , y , y    ). Using Cramer’s rule, new relationships for the 
partial derivatives in physical space shown as Eqs. (A.2) and (A.3) are constructed.  
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 (A.3) 

In the equations above, the value in the denominator is the Jacobian, which is defined as: 

 
x y

J x y x y
x y
 

   

 

    (A.4) 

Using the definition of the Jacobian, Eqs. (A.2) and (A.3) can now be written as follows: 

 
1 y y

x J  
 
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  

   
 (A.4) 
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1 x x

y J  
 
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  

   
 (A.5) 

Comparing Eqs. (A.4) and (A.5) to the chain-ruled equations for partial derivatives in physical 

space (i.e., x xx
 

 

  
 

  
 and y yy

 
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) reveals the following relationships: 
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    
   
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 (A.7) 

Combining Eqs. (A.6) and (A.7) into matrix form (shown as Eq. [A.8]) allows for the relationships 
between the grid metrics and the inverse grid metrics to be easily seen via inspection.  
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It is also necessary to define the inverse of this procedure. The partial derivatives of the physical 

variables, which are 
x x x

 

 

          
       

          
 and 

y y y
 

 

          
       

          
, can be 

written as the following system: 
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x x

y y

x

y

  

 



   
      
         
      

 (A.9) 

Applying Cramer’s rule to Eq. (A.9) gives the equations for the partial derivatives in 
computational space shown as Eqs. (A.10) and (A.11). 

 

x

y

x x

y y

x

y





 

 











 (A.10) 

 

x

y

x x

y y

x

y





 

 











 (A.11) 

The value in the denominators of (A.10) and (A.11) is now the inverse Jacobian, which will be 
denoted with a script J (J ): 

 
x x

x y y x
y y

 
   

 
  J  (A.12) 

The equations for the partial derivatives in computational space above can now be written as 
follows: 

 y x
1

x y
 



   
  

   J
 (A.13) 

 x y
1

y x
 



   
  

   J
 (A.14) 

Comparing Eqs. (A.13) and (A.14) to the equations for partial derivatives in computational 

space, i.e., 






















































y
y

x
x


 and 























































y
y

x
x


, reveals the 

following relationships: 
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 y x
1x y

x y x y   
       

       
        J

 (A.15) 

 x y
1x y

x y y x   
       

       
        J

 (A.16) 

Combining Eqs. (A.15) and (A.16) into matrix form (shown as Eq. [A.17]) allows for the following 
relationships between the grid metrics and the inverse grid metrics (this time utilizing the inverse 
Jacobian) to again be easily seen via inspection.  

 y x

y x

x y 1x x
x y

y y

 

 

 

 

    
       
              
       

J
 (A.17) 

yx




J  

xy


 

J  

yx


 

J  

xy




J  

x y y x    J  
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APPENDIX B.  DERIVATION OF WINSLOW EQUATIONS 

Elliptic smoothing can be used to generate and improve meshes in physical space. The 
equations that are used for the smoothing process are derived from the relationship that exists 
between a mesh in physical space and computational space. The Winslow equations were 
originally applied to structured meshes. A very simple structured mesh, in both physical and 
computational space, can be seen below.  

 
Figure B-1.  Physical and Computational Space for a Structured Mesh 

 
The coordinates in two-dimensional physical space are represented as (x,y), and the 
coordinates in two-dimensional computational space are represented as (). The mapping 
between these two domains is defined with the transformations shown as Eqs. (B.1) and (B.2) 
(Ref. 12). 

 
(x, y)
(x, y)

 

 




 (B.1) 

 
x x( , )
y y( , )

 

 




 (B.2) 
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Elliptic smoothing utilizes elliptic partial differential equations in the form of Poisson's Eq. (B.3) 
or the homogeneous Laplace's Eq. (B.4) (Ref. 17). 

 2 f (x, y)   (B.3) 

 
2 0   (B.4) 

The elliptic smoothing equations are constructed by having a Laplacian operator with respect to 
physical coordinates act on the computational coordinates. The result is then set equal to zero if 
the Laplace form is desired and set equal to a forcing function if the Poisson form is desired. 
The elliptic smoothing equations are conventionally expressed in one of the two forms shown 
below:  

P-Q Form: 

 

2 2
2

2 2

2 2
2

2 2

P
x y

Q
x y

 


 


 
   

 

 
   

 

 (B.5) 

 
 Form: 

 
 

 

2 2
2

2 2

2 2
2

2 2

x y

x y

 
  

 
  

 
      

 

 
      

 

 (B.6) 

These equations are currently cast in physical space and represent the smooth variation of the 
computational coordinates in physical space. When the forcing functions are set equal to zero, 
the equations convert to Laplace’s equations, which have the property that the average value 
over a spherical surface is equal to the value at the center of the sphere. This has the effect of 
causing a node to move to the centroid of the nodes to which it is connected. Solutions to 
Laplace’s equations also satisfy the maximum/minimum principle, which states that the 
dependent variables on the interior of the domain are bounded by the values on the boundary of 
the domain. This ensures that the interior grid lines do not cross if the boundaries of the domain 
are chosen to be constant and constant gridlines (Ref. 12) as seen in Fig. B-1.  

It was noted that the equations in the form shown in (B.5) and (B.6) represent a smooth 
variation of the computational coordinates in physical space. However, the computational 
coordinates (andare generally known, and it is the values of the physical coordinates (x 
and y) that are desired. For the equations to be of practical value, they are transformed to 
computational space (i.e., the partial derivatives will be with respect to computational space). 
The final transformed equations are referred to as the Winslow equations, the derivation of 
which is shown below.  
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The chain rule for differentiation in multiple variables states that if f f ( , )  and

   x, y and x, y     , then the derivative for f is 
f f f
x x x

 

 

    
 

    
. This can be 

rewritten in operator form as      f f f
x x x

 

 

    
 

    
.  

Now, consider the case where f
x





. This gives the equation for the second derivative: 

x x x x x x
    

 

            
      

            

 

Or in condensed notation: 

 xx x x x x        

 

   

   

xx x x x x

1 1 1 1
xx x

1 2 1 1 2 1
xx

J y J y J y J y

J y J J y J y J y J J y J y

   

       

    
 

 
 



   

     

 
 

 

 
 

 

           

 

    xx 3 3

y y
Jy J y Jy J y

J J
 

           (B.7) 

Likewise: 

   

   

2 2

x x x x

xx x x x x

1 1 1 1
xx x

1 2 1 1 2 1
xx

x x x x x x

J y J y J y J y

J y J J y J y J y J J y J y

 

   

       

    
   

 

    
 

 
 



   

     

      
    

        

 
 

 

 
   

 

           

    xx 3 3

y y
Jy J y Jy J y

J J
 

             (B.8) 
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The derivatives of the Jacobian are as follows: 

n

J x y y x x y y x
J x y y x x y y x
        

       

   

   

 
Substituting the values of the Jacobian and the Jacobian derivatives into (B.7) gives: 

 

 

2
xx 3

3

y
x y y x y y x y y y x x y y y x y

J
y

x y y x y y x y y y x y x y y y x y
J



                



                 

      

     
 

Rearranging and combining terms gives: 

   2 2 2 2
xx 3

1 x y y y y 2y y y y y x y x 2y y x
J                       
   

Following the same steps for the other terms gives: 

   2 2 2 2
yy 3

1 y x x x x 2x x x x x y x y 2x x y
J                        
   

   2 2 2 2
xx 3

1 x y y y y 2y y y y y x y x 2y y x
J                        
   

   2 2 2 2
yy 3

1 y x x x x 2x x x x x y x y 2x x y
J                         
   

Recall that the Laplacian of the computational coordinates are as follows: 

     

      

2
xx yy

2 2 2 2 2
3

2 2 2 2

1 y x y x 2 x x y y x x y x
J

x x y y 2 x x y y y x y y

           

           

  



  

        
 

      
   

     

      

2
xx yy

2 2 2 2 2
3

2 2 2 2

1 y x y x 2 x x y y x x y x
J

x x y y 2 x x y y y x y y

           

           

  



  

         
 

      
   
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Breaking out the coefficients gives the Laplacians in computational coordinates in the following 
form: 

 
 

 

2
3

2
3

1 y x 2 x x x y 2 y y
J

1 y x 2 x x x y 2 y y
J

       

       

      

      

             

              

 (B.9) 

 where 

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 

 

Now an operator is defined  G  as: 

 
 

     2 2 2

2 2G 2  
   

  
  

     
(B.10)

 

Using the operator G, Eqs. (B.9) now become: 

   2
x y3 2

1 1y G(x) x G(y) G(x) G(y)
J J         

 

   2
x y3 2

1 1y G(x) x G(y) G(x) G(y)
J J         

 
Define a vector 

x
r

y
 

  
 

and these become: 

 2
2

1 G(r)
J

       and  2
2

1 G(r)
J

       

Rearranging the above equations slightly gives: 

 

 

2 2
x y

2 2
x y

G(x) G(y) J

G(x) G(y) J

  

  

   

   

 

In Matrix form this is: 

2
x y 2

2
x y

G(x)
J

G(y)
  

  

    
     

      
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Solving for G(x) and G(y) gives: 

1 2
x y2

2
x y

22
y y

2
x xx y y x

G(x)
J

G(y)

G(x) J
G(y)

  

  

  

     



    
      

    

     
           

 

Using the inverse-Jacobian, derived in Appendix A and shown as (A.12), this becomes: 

2 22
y y

2 2
x x

G(x) J
G(y)

   

   

     
   

      J

 
 y y2 2 2 2 2 2G(x) J J x x 

 
   

 
             

 J J
 (B.11) 

 2 2 2 2 2 2x xG(y) J J y y 

 
   

 
              

 J J
 (B.12) 

B.1 ZERO FORCING FUNCTION 

The desired conditions for smooth interior points using the homogeneous Laplace’s equation is 
2 0  and 2 0  . If 2  and 2  are set to zero in Eqs. (B.11) and (B.12), then it follows 

that G(x) = 0 and G(y) = 0. Using the definition for G(x) and G(y) shown in Eq. (B.10) gives the 
final form of the Winslow equations with no forcing function: 

G(x) = 0 

G(y) = 0 

 

2 2 2

2 2

2 2 2

2 2

x x x2 0

y y y2 0

  
  

  
  

  
  

  

  
  

  

 (B.13) 

 where: 

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

   

B.2 WINSLOW EQUATIONS WITH FORCING FUNCTIONS 

Consider Eqs. (B.5) and (B.6) with the forcing functions (P and Q) intact (i.e., the 
nonhomogeneous Poisson’s equation form): 
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 

 

2

2

P x, y

Q x, y





 

   

The Laplacians of the computational coordinates can now again be related to G(x) and G(y) by 
examining Eqs. (B.11) and (B.12). (Note that at this point no assumptions were made as to 
whether the equations were in the Laplace or Poisson form.) 

2 2 2G(x) J x x          

2 2 2G(y) J y y          

Applying the forcing functions gives: 

2

2

G(x) J x P x Q

G(y) J y P y Q
 

 

    

      

Thomas and Middlecoff (Ref. 18) proposed the following form for the forcing functions: 

 
     

     

P x, y ,

Q x, y ,

   

   

   

   
 (B.14) 

Using the Thomas-Middlecoff form (a.k.a. the  - form) gives: 

   

   

2

2

G(x) J x x

G(y) J y y
 

 

   

   

          

            

Employing the definition of the G operator from Eq. (B.10) results in: 

   

   

2

2

x 2 x x J x x

y 2 y y J y y
    

    

      

      

            

              

 

   

   

2 2

2 2

x 2 x x J x J x 0

y 2 y y J y J y 0
    

    

      

      

          

          
 (B.15) 

Applying the dot product to the computational coordinates gives: 

 

 

2 2
x x y y 2

2 2
x x y y 2

y y x x 1 y x
J J J J J

y y x x 1 y x
J J J J J

   

 

   

 

     

     

 
       

 
       
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This is now plugged into Eq. (B.15). 

   

   

2 2 2 2

2 2 2 2

x 2 x x x y x x y x 0

y 2 y y y y x y y x 0

        

        

  

  

        

        
 

x 2 x x x x 0
y 2 y y y y 0
    

    

    

    

      

        

Rearranging the equations above results in the final form of the Winslow equations using forcing 
functions in the Thomas-Middlecoff form: 

 
   

   

x x 2 x x x 0

y y 2 y y y 0
    

    

  

  

    

    
 (B.16) 

 where again: 

2 2

2 2

x y
x x y y

x y

 

   

 







 

 

 
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NOMENCLATURE 

A Area 

d  Direction vector about which to reflect a point  

dAB Metric length 

dlat Computational space offset in the lateral direction 

dn Computational space offset in the normal direction 

D Drag 

D* Target drag 

1e  First basis vector for transformed space (associated with normal spacing) 

2e  Second basis vector for transformed space (associated with lateral spacing) 

F  Vector field 

g Geometric progression factor 

h Triangle height 

I Cost function 

J Grid Jacobian: x y x y     

J  Inverse Grid Jacobian: x y y x      

L Lift 

L* Target lift 

M Riemannian metric tensor 

n  Outward facing normal 

n̂  Unit length normal vector 

n̂   component of the unit normal vector in computational space 

n̂   component of the unit normal vector in computational space 

N Valence count; i.e., the number of connected neighboring nodes 

PA Average location of interior nodes connected to a boundary node 

PG Ghost point 

PS Surface point  

PS- Surface point before PS 

PS+ Surface point after PS 

r̂  Edge vector used for refinement 

R Residual 

T Temperature 
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w11 Coefficient for x component of local node 1 (the central node) on a triangle 
comprising a control volume 

w21 Coefficient for x component of local node 1 (the central node) on a triangle 
comprising a control volume 

w12 Coefficient for x component of local node 2 on a triangle comprising a control 
volume 

w22 Coefficient for x component of local node 2 on a triangle comprising a control 
volume 

w13 Coefficient for x component of local node 3 on a triangle comprising a control 
volume 

w23 Coefficient for x component of local node 3 on a triangle comprising a control 
volume 

WD Drag coefficient 

WL Lift coefficient 

x  Derivative of the physical coordinate x with respect the computational 
coordinate  

x  Derivative of the physical coordinate x with respect the computational 
coordinate 

x  Second derivative of x: 
2 2x /    

x  Second derivative of x: 2 2x /    

x  Mixed second derivative of x: 2x /      

y  Derivative of the physical coordinate y with respect the computational 
coordinate  

y  Derivative of the physical coordinate y with respect the computational 
coordinate  

y  Second derivative of y: 2 2y /    

y  Second derivative of y: 2 2y /    

y  Mixed second derivative of y: 2y /      

  Winslow coefficient: 2 2x y   

  Winslow coefficient: x x y y     

i  Design variable

s Off-body spacing 
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  Generic scalar, equipotential function 

  Winslow coefficient: 2 2x y   

i  Length of face i for a triangle 

 Scaling matrix (Eigenvalues of Riemannian metric tensor) 

 Second component of computational space 

z Vorticity 

  First component of computational space 

C  Point specifically defined to be on a unit circle in computational space 

 Stream function 

 

 


